Skip to main content

Interdependence Between the Laurent-Series and Elliptic Solutions of Nonintegrable Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Abstract

The standard methods for the search for the elliptic solutions consist of two independent steps: transformation of a nonlinear polynomial differential equation into a nonlinear algebraic system and the search for solutions of the obtained system. It has been demonstrated by the example of the generalized Hénon–Heiles system that the use of the Laurent-series solutions of the initial differential equation assists to solve the obtained algebraic system and, thereby, simplifies the search for elliptic solutions. This procedure has been automatized with the help of the computer algebra systems Maple and REDUCE. The Laurent-series solutions also assist to solve the inverse problem: to prove the non-existence of elliptic solutions. Using the Hone’s method based on the use the Laurent-series solutions and the residue theorem, we have proved that the cubic complex one-dimensional Ginzburg–Landau equation has neither elliptic standing wave nor elliptic travelling wave solutions. To find solutions of the initial differential equation in the form of the Laurent series we use the Painlevé test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weiss, J.: Bäcklund transformation and linearizations of the Hénon–Heiles system. Phys. Lett. A 102, 329–331 (1984); Bäcklund transformation and the Hénon–Heiles system. Phys. Lett. A 105, 387–389 (1984)

    Google Scholar 

  2. Santos, G.S.: Application of finite expansion in elliptic functions to solve differential equations. J. Phys. Soc. Japan 58, 4301–4310 (1989)

    Article  MathSciNet  Google Scholar 

  3. Conte, R., Musette, M.: Linearity inside nonlinearity: exact solutions to the complex Ginzburg–Landau equation. Phisica D 69, 1–17 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Timoshkova, E.I.: A New class of trajectories of motion in the Hénon–Heiles potential field. Astron. Zh. 76, 470–475 (1999) (in Russian); Astron. Rep. 43, 406–411 (1999) (in English)

    Google Scholar 

  5. Fan, E.: An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolutions equations. J. Phys. A 36, 7009–7026 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kudryashov, N.A.: Nonlinear differential equations with exact solutions expressed via the Weierstrass function, nlin.CD/0312035

    Google Scholar 

  7. Timoshkova, E.I., Vernov, S.Y.: On two nonintegrable cases of the generalized Hénon–Heiles system with an additional nonpolynomial term. math-ph/0402049. Yadernaya Fizika (Physics of Atomic Nuclei) 68(11) (2005) (in press)

    Google Scholar 

  8. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations, nlin.SI/0406007

    Google Scholar 

  9. Musette, M., Conte, R.: Analytic solitary waves of nonintegrable equations. Physica D 181, 70–79 (2003); nlin.PS/0302051

    Article  MATH  MathSciNet  Google Scholar 

  10. Vernov, S.Y.: Construction of solutions for the generalized Hénon–Heiles system with the help of the Painlevé test. TMF (Theor. Math. Phys.) 135, 409–419 (2003) (in Russian); 792–801 (in English), math-ph/0209063

    Google Scholar 

  11. Ginzburg, V.L., Landau, L.D.: On the theory of superconductors, Zh. Eksp. Teor. Fiz (Sov. Phys. JETP) 20, 1064–1082 (1950) (in Russian); In: Landau, L.D. (ed.), Collected Papers. Pergamon Press, Oxford, p. 546 (1950) (in English)

    Google Scholar 

  12. Hone, A.N.W.: Non-existence of elliptic travelling wave solutions of the complex Ginzburg–Landau equation. Physica D 205, 292–306 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Conte, R., Musette, M.: Solitary waves of nonlinear nonintegrable equations. nlin.PS/0407026

    Google Scholar 

  14. Vernov, S.Y.: Construction of single-valued solutions for nonintegrable systems with the help of the Painlevé test. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Proc. Int. Conference Computer Algebra in Scientific Computing (CASC 2004), St. Petersburg, Russia, pp. 457–465. Technische Universitat, Munchen (2004); nlin.SI/0407062

    Google Scholar 

  15. Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type. I & II. J. Math. Phys. 21, 715–721, 1006–1015 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hénon, M., Heiles, C.: The applicability of the third integral of motion: Some numerical experiments. Astronomical J. 69, 73–79 (1964)

    Article  Google Scholar 

  17. Davenport, J.H., Siret, Y., Tournier, E.: Calcul Formel, Systemes et Algorithmes de Manipulations Algebriques, Masson, Paris, New York (1987)

    Google Scholar 

  18. Hearn, A.C.: REDUCE. User’s Manual, Vers. 3.8, http://www.reduce-algebra.com/documentation.htm , REDUCE. User’s and Contributed Packages Manual, Vers. 3.7, CA and Codemist Ltd., Santa Monica, California (1999), http://www.zib.de/Symbolik/reduce/more/moredocs/reduce.pdf

  19. Heck, A.: Introduction to Maple, 3rd edn. Springer, New York (2003)

    MATH  Google Scholar 

  20. van Hoeij, M.A.: package algcurves, Maple V and Maple 6, http://www.math.fsu.edu/~hoeij/maple.html

  21. Aranson, I., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002); cond-mat/0106115

    Article  MathSciNet  MATH  Google Scholar 

  22. van Hecke, M., Storm, C., van Saarlos, W.: Sources, sinks and wavenumber selection in coupled CGL equations and experimental implications for counter-propagating wave systems. Phisica D 133, 1–47 (1999); Patt-sol/9902005

    Google Scholar 

  23. van Saarloos, W., Hohenberg, P.C.: Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations. Phisica D 56, 303–367 (1992); Erratum 69, p. 209 (1993)

    Google Scholar 

  24. Cariello, F., Tabor, M.: Painlevé expansions for nonintegrable evolution equations. Phisica D 39, 77–94 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  25. Erdélyi, A., et al. (eds.): Higher Transcendental Functions (based, in part, on notes left by H. Bateman), vol. 3. MC Graw-Hill Book Company, New York (1955)

    Google Scholar 

  26. Vernov, S.Y.: On elliptic solutions of the cubic complex one-dimensional Ginzburg–Landau equation, nlin.PS/0503009

    Google Scholar 

  27. Vernov, S.Y.: http://theory.sinp.msu.ru/~svernov/programs

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vernov, S.Y. (2005). Interdependence Between the Laurent-Series and Elliptic Solutions of Nonintegrable Systems. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_39

Download citation

  • DOI: https://doi.org/10.1007/11555964_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics