Advertisement

Augmented Oblivious Polynomial Evaluation Protocol and Its Applications

  • Huafei Zhu
  • Feng Bao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3679)

Abstract

In this paper, we first introduce a new notion called augmented oblivious polynomial evaluation (AOPE), a useful notion to deal with the general oblivious polynomial evaluation protocol. And then we propose a novel implementation of our AOPE protocol. Finally we show that our construction is provably secure within our model. The potential areas of application of this protocol are numerous (two-party computation, bidding protocol, keyword search problem, and so on...).

Keywords

Augmented oblivious polynomial evaluation homomorphic commitment scheme homomorphic public key encryption 

References

  1. 1.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bleichenbacher, D., Nguyên, P.Q.: Noisy polynomial interpolation and noisy chinese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 53–69. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: FOCS 2001, pp. 136–145 (2001)Google Scholar
  4. 4.
    Chaum, D., Pedersen, T.P.: Wallet Databases with Observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Proc. of Public Key Cryptography 2002, pp. 125–140. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: 2nd Theory of Cryptography Conference, TCC 2005 (2005)Google Scholar
  9. 9.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Fujisaki, E., Okamoto, T.: Statistically zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of Complexity 20, 356–371 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Naor, M., Pinkas, B.: Oblivious Transfer and Polynomial Evaluation. In: STOC 1999, pp. 245–254 (1999)Google Scholar
  13. 13.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce 1999, pp. 129–139 (1999)Google Scholar
  14. 14.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Huafei Zhu
    • 1
  • Feng Bao
    • 1
  1. 1.Department of Information SecurityInstitute for Infocomm Research, A-StarSingapore

Personalised recommendations