Skip to main content

A Family of Fast Syndrome Based Cryptographic Hash Functions

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3715)

Abstract

Recently, some collisions have been exposed for a variety of cryptographic hash functions [20,21] including some of the most widely used today. Many other hash functions using similar constructions can however still be considered secure. Nevertheless, this has drawn attention on the need for new hash function designs.

In this article is presented a family of secure hash functions, whose security is directly related to the syndrome decoding problem from the theory of error-correcting codes.

Taking into account the analysis by Coron and Joux [4] based on Wagner’s generalized birthday algorithm [19] we study the asymptotical security of our functions. We demonstrate that this attack is always exponential in terms of the length of the hash value.

We also study the work-factor of this attack, along with other attacks from coding theory, for non asymptotic range, i.e. for practical values. Accordingly, we propose a few sets of parameters giving a good security and either a faster hashing or a shorter description for the function.

Keywords

  • cryptographic hash functions
  • provable security
  • syndrome decoding
  • NP-completeness
  • Wagner’s generalized birthday problem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. Cryptology ePrint Archive (2003), http://eprint.iacr.org/2003/230/

  2. Barg, A.: Complexity issues in coding theory. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding theory, ch. 7, vol. I, pp. 649–754. North-Holland, Amsterdam (1998)

    Google Scholar 

  3. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3) (May 1978)

    Google Scholar 

  4. Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash function. Cryptology ePrint Archive (2004), http://eprint.iacr.org/2004/013/

  5. Dai, W.: Crypto++ library, http://www.eskimo.com/~weidai/

  6. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  7. Gurevich, Y.: Average case completeness. Journal of Computer and System Sciences 42(3), 346–398 (1991)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. Joux, A., Granboulan, L.: A practical attack against knapsack based hash functions. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 58–66. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  9. Levin, L.: Average case complete problems. SIAM Journal on Computing 15(1), 285–286 (1986)

    CrossRef  MATH  MathSciNet  Google Scholar 

  10. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. In: DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, January 1978, pp. 114–116 (1978)

    Google Scholar 

  11. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    CrossRef  Google Scholar 

  12. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

    Google Scholar 

  13. National Insitute of Standards and Technology. FIPS Publication 180: Secure Hash Standard (1993)

    Google Scholar 

  14. Niederreiter, H.: Knapsack-type crytosystems and algebraic coding theory. Prob. Contr. Inform. Theory 15(2), 157–166 (1986)

    MathSciNet  Google Scholar 

  15. Preneel, B.: The state of cryptographic hash functions. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 158–182. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  16. Rivest, R.L.: The MD4 message digest algorithm. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991)

    Google Scholar 

  17. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  18. Sendrier, N.: On the security of the McEliece public-key cryptosystem. In: Blaum, M., Farrell, P.G., van Tilborg, H. (eds.) Information, Coding and Mathematics, pp. 141–163. Kluwer, Dordrecht (2002); Proceedings of Workshop honoring Prof. Bob McEliece on his 60th birthday

    Google Scholar 

  19. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  20. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions md4 and ripemd. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  21. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Augot, D., Finiasz, M., Sendrier, N. (2005). A Family of Fast Syndrome Based Cryptographic Hash Functions. In: Dawson, E., Vaudenay, S. (eds) Progress in Cryptology – Mycrypt 2005. Mycrypt 2005. Lecture Notes in Computer Science, vol 3715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554868_6

Download citation

  • DOI: https://doi.org/10.1007/11554868_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28938-8

  • Online ISBN: 978-3-540-32066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics