Skip to main content

Power Analysis by Exploiting Chosen Message and Internal Collisions – Vulnerability of Checking Mechanism for RSA-Decryption

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 3715)

Abstract

In this paper, we will point out a new side-channel vulnerability of cryptosystems implementation based on BRIP or square-multiply-always algorithm by exploiting specially chosen input message of order two. A recently published countermeasure, BRIP, against conventional simple power analysis (SPA) and differential power analysis (DPA) will be shown to be vulnerable to the proposed SPA in this paper. Another well known SPA countermeasure, the square-multiply-always algorithm, will also be shown to be vulnerable to this new attack. Further extension of the proposed attack is possible to develop more powerful attacks.

Keywords

  • Chosen-message attack
  • Cryptography
  • Side-channel attack
  • Simple power analysis (SPA)
  • Smart card

This work was supported by University IT Research Center Project.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  2. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystem. Commun. of ACM 21(2), 120–126 (1978)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Miller, V.: Uses of elliptic curve in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  4. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–210. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  6. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  7. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than downwards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 269–280. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  8. Coron, J.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  9. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient countermeasures against RPA, DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 343–356. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  10. PKCS #1 v2.1, RSA Cryptography Standard, January 5 (2001), http://www.rsasecurity.com/rsalabs/pkcs/

  11. Bellare, M., Rogaway, P.: Optimal asymmetric encryption padding – How to encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    CrossRef  Google Scholar 

  12. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptography. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  15. Quisquater, J.-J., Couvreur, C.: Fast decipherment algorithm for RSA public key cryptosystem. Electronics Letters 18(21), 905–907 (1982)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yen, SM., Lien, WC., Moon, S., Ha, J. (2005). Power Analysis by Exploiting Chosen Message and Internal Collisions – Vulnerability of Checking Mechanism for RSA-Decryption. In: Dawson, E., Vaudenay, S. (eds) Progress in Cryptology – Mycrypt 2005. Mycrypt 2005. Lecture Notes in Computer Science, vol 3715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554868_13

Download citation

  • DOI: https://doi.org/10.1007/11554868_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28938-8

  • Online ISBN: 978-3-540-32066-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics