Skip to main content

An Expectation-Maximization Algorithm for Analysis of Evolution of Exon-Intron Structure of Eukaryotic Genes

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 3678)

Abstract

We propose a detailed model of evolution of exon-intron structure of eukaryotic genes that takes into account gene-specific intron gain and loss rates, branch-specific gain and loss coefficients, invariant sites incapable of intron gain, and rate variability of both gain and loss which is gamma-distributed across sites. We develop an expectation-maximization algorithm to estimate the parameters of this model, and study its performance using simulated data.

Keywords

  • Terminal Node
  • Eukaryotic Gene
  • Intron Gain
  • Spliceosomal Intron
  • Adjacent Intron

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

eBook
EUR   16.99
Price includes VAT (Finland)
  • ISBN: 978-3-540-31814-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
EUR   17.47
Price includes VAT (Finland)
  • ISBN: 978-3-540-28932-6
  • Dispatched in 3 to 5 business days
  • Exclusive offer for individuals only
  • Free shipping worldwide
    See shipping information.
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nixon, J.E., Wang, A., Morrison, H.G., McArthur, A.G., Sogin, M.L., Loftus, B.J., Samuelson, J.: A Spliceosomal Intron in Giardia Lamblia. Proc. Natl. Acad. Sci. USA 99, 3701–3705 (2002)

    CrossRef  Google Scholar 

  2. Gilbert, W.: The Exon Theory of Genes. Cold Spring Harb. Symp. Quant. Biol. 52, 901–905 (1987)

    Google Scholar 

  3. Cho, G., Doolittle, R.F.: Intron Distribution in Ancient Paralogs Supports Random Insertions and Not Random Loss. J. Mol. Evol. 44, 573–584 (1997)

    CrossRef  Google Scholar 

  4. Lynch, M.: Intron Evolution as a Population-genetic Process. Proc. Natl. Acad. Sci. USA 99, 6118–6123 (2002)

    CrossRef  Google Scholar 

  5. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable Interkingdom Conservation of Intron Positions and Massive. Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution. Curr. Biol. 13, 1512–1517 (2003)

    Google Scholar 

  6. Qui, W.-G., Schisler, N., Stoltzfus, A.: The Evolutionary Gain of Spliceosomal Introns: Sequence and Phase Preferences. Mol. Biol. Evol. 21, 1252–1263 (2004)

    CrossRef  Google Scholar 

  7. Roy, S.W., Gilbert, W.: Complex Early Genes. Proc. Natl. Acad. Sci. USA 102, 1986–1991 (2005)

    CrossRef  Google Scholar 

  8. Dibb, N.J.: Proto-Splice Site Model of Intron Origin. J. Theor. Biol. 151, 405–416 (1991)

    CrossRef  Google Scholar 

  9. Friedman, N., Ninio, M., Pe’er, I., Pupko, T.: A Structural EM Algorithm for Phylogenetic Inference. J. Comput. Biol. 9, 331–353 (2002)

    CrossRef  Google Scholar 

  10. Holmes, I.: Using Evolutionary Expectation Maximisation to Estimate Indel Rates. Bioinformatics 21, 2294–2300 (2005)

    CrossRef  Google Scholar 

  11. Brooks, D.J., Fresco, J.R., Singh, M.: A Novel Method for Estimating Ancestral Amino Acid Composition and Its Application to Proteins of the Last Universal Ancestor. Bioinformatics 20, 2251–2257 (2004)

    CrossRef  Google Scholar 

  12. Siepel, A., Haussler, D.: Phylogenetic Estimation of Context-Dependent Substitution Rates by Maximum Likelihood. Mol. Biol. Evol. 21, 468–488 (2004)

    CrossRef  Google Scholar 

  13. Yang, Z.: Maximum Likelihood Phylogenetic Estimation from DNA Sequences with Variable Rates over Sites: Approximate Methods. J. Mol. Evol. 39, 306–314 (1994)

    CrossRef  Google Scholar 

  14. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J. Mol. Evol. 17, 368–376 (1981)

    CrossRef  Google Scholar 

  15. Mourier, T., Jeffares, D.C.: Eukaryotic Intron Loss. Science 300, 1393 (2003)

    CrossRef  Google Scholar 

  16. Sverdlov, A.V., Babenko, V.N., Rogozin, I.B., Koonin, E.V.: Preferential Loss and Gain of Introns in 3’ Portions of Genes Suggests a Reverse-Transcription Mechanism of Intron Insertion. Gene 338, 85–91 (2004)

    CrossRef  Google Scholar 

  17. Roy, S.W., Gilbert, W.: The Pattern of Intron Loss. Proc. Natl. Acad. Sci. USA 102, 713–718 (2005)

    CrossRef  Google Scholar 

  18. Cho, S., Jin, S.-W., Cohen, A., Ellis, R.E.: A Phylogeny of Caenorhabditis Reveals Frequent Loss of Introns During Nematode Evolution. Genome Res. 14, 1207–1220 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carmel, L., Rogozin, I.B., Wolf, Y.I., Koonin, E.V. (2005). An Expectation-Maximization Algorithm for Analysis of Evolution of Exon-Intron Structure of Eukaryotic Genes. In: McLysaght, A., Huson, D.H. (eds) Comparative Genomics. RCG 2005. Lecture Notes in Computer Science(), vol 3678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554714_4

Download citation

  • DOI: https://doi.org/10.1007/11554714_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28932-6

  • Online ISBN: 978-3-540-31814-9

  • eBook Packages: Computer ScienceComputer Science (R0)