Skip to main content

Maximizing Synteny Blocks to Identify Ancestral Homologs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3678))

Abstract

Most genome rearrangement studies are based on the assumption that the compared genomes contain unique gene copies. This is clearly unsuitable for species with duplicated genes or when local alignment tools provide many ambiguous hits for the same gene. In this paper, we compare different measures of order conservation to select, among a gene family, the pair of copies in two genomes that best reflects the common ancestor. Specifically, we present algorithms to identify ancestral homologs, or exemplars [1] , by maximizing synteny blocks between genomes. Using simulated data, we validate our approach and show the merits of using a conservative approach when making such assignments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sankoff, D.: Genome rear. with gene fam. Bioinformatics 15, 909–917 (1999)

    Google Scholar 

  2. Kececioglu, J., Sankoff, D.: Exact and approx. algo. for sorting by reversals, with application to genome rear. Algorithmica 13, 180–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). J. ACM 48, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  4. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting signed permutations by reversals. SIAM Journal on Computing 29, 880–892 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, p. 106. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Walter, M.E., Dias, Z., Meidanis, J.: Reversal and transposition distance of linear chromosomes. In: String Proc. Information Retrieval (SPIRE 1998) (1998)

    Google Scholar 

  9. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proc. IEEE 36th Ann. Symp. Found. Comp. Sci., pp. 581–592 (1995)

    Google Scholar 

  11. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comp. System Sci. 65(3), 587–609 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangnements. J. of Bioinf. and Comput. Biol. 1(1), 71–94 (2003)

    Article  Google Scholar 

  13. Burgetz, I.J., Shariff, S., Pang, A., Tillier, E.: Positional homology in bacterial genomes. manuscript (2005)

    Google Scholar 

  14. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its app. to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Figeac, M., Varré, J.S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Bérard, S., Bergeron, A., Chauve, C.: Conservation of combinatorial structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Tang, J., Moret, B.M.E.: Phylogenetic reconstruction from gene rearrangement data with unequal gene contents. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 37–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhing, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. In: TCCB (2005) (accepted)

    Google Scholar 

  20. Bryant, D.: The complexity of calculating exemplar distances. In: Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map alignment and the Evolution of Gene Families. Series in Computational Biology, vol. 1. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  21. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics (2005)

    Google Scholar 

  22. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In: Texts in Algorithm, vol. 3, pp. 3–16. KCL publications (2004)

    Google Scholar 

  23. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. Theoretical Computer Science 325, 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. In: 7th Workshop on Algorithm Engineering and Experiments (ALENEX 2005). SIAM Press, Philadelphia (2005)

    Google Scholar 

  25. Lefebvre, J.F., El-Mabrouk, N., Tillier, E., Sankoff, D.: Detection and validation of single gene inversions. Bioinformatics 19, 190i–196i (2003)

    Google Scholar 

  26. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint reuse in mamm. evol. PNAS, U.S.A. 100(13), 7672–7677 (2003)

    Article  Google Scholar 

  27. http://www.cs.unm.edu/~moret/GRAPPA

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourque, G., Yacef, Y., El-Mabrouk, N. (2005). Maximizing Synteny Blocks to Identify Ancestral Homologs. In: McLysaght, A., Huson, D.H. (eds) Comparative Genomics. RCG 2005. Lecture Notes in Computer Science(), vol 3678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11554714_3

Download citation

  • DOI: https://doi.org/10.1007/11554714_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28932-6

  • Online ISBN: 978-3-540-31814-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics