Large Baseline Matching of Scale Invariant Features

  • Elisabetta Delponte
  • Francesco Isgrò
  • Francesca Odone
  • Alessandro Verri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


The problem of feature points matching between pair of views of the scene is one of the key problems in computer vision, because of the number of applications. In this paper we discuss an alternative version of an SVD matching algorithm earlier proposed in the literature. In the version proposed the original algorithm has been modified for coping with large baselines. The claim of improved performances for larger baselines is supported by experimental evidence.


Interest Point Scale Invariant Feature Transform Stereo Pair Correct Match Epipolar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besl, P., McKay, N.: A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Deriche, R., Zhang, Z., Luong, Q.T., Faugeras, O.: Robust recovery of the epipolar geometry from an uncalibrated stereo rig. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 567–576. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Pritchett, P., Zisserman, A.: Wide baseline stereo matching. In: Proceedings of the International Conference on Computer Vision, pp. 754–760 (1998)Google Scholar
  4. 4.
    Baumberg, A.: Reliable feature matching across widely separated views. In: Proceedings of CVPR, pp. 774–781 (2000)Google Scholar
  5. 5.
    Tuytelaars, T., Gool, L.V.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proceedings of the British Machine Vision Conference, pp. 412–425 (2000)Google Scholar
  6. 6.
    Lu, X., Manduchi, R.: Wide baseline feature matching using the cross-epipolar ordering constraint. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition, vol. I, pp. 16–23 (2004)Google Scholar
  7. 7.
    Pilu, M.: A direct method for stereo correspondence based on singular value decomposition. In: Proceedings of CVPR, Puerto Rico, pp. 261–266 (1997)Google Scholar
  8. 8.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  9. 9.
    Scott, G., Longuet-Higgins, H.: An algorithm for associating the features of two patterns. In: Proc. Royal Society London, vol. B244, pp. 21–26 (1991)Google Scholar
  10. 10.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the ICCV, Corfú, Greece, pp. 1150–1157 (1999)Google Scholar
  11. 11.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of CVPR, vol. II, pp. 257–263 (2003)Google Scholar
  12. 12.
    Lindeberg, T.: Scale-space: A framework for handling image structures at multiple scales (1996)Google Scholar
  13. 13.
    Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual corresposdence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Freeman, W., Adelson, E.: The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 891–906 (1991)CrossRefGoogle Scholar
  15. 15.
    Hartley, R.I., Zisserman, A.: Multiple view geometry. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. International Journal of Computer Vision 6, 59–70 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Elisabetta Delponte
    • 1
  • Francesco Isgrò
    • 1
  • Francesca Odone
    • 1
  • Alessandro Verri
    • 1
  1. 1.INFM – DISIUniversità di GenovaGenovaItaly

Personalised recommendations