Advertisement

Classification of Natural Images Using Supervised and Unsupervised Classifier Combinations

  • Leena Lepistö
  • Iivari Kunttu
  • Jorma Autio
  • Ari Visa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)

Abstract

Combining classifiers has proved to be an effective solution to several classification problems in pattern recognition. In this paper we use classifier combination methods for the classification of natural images. In the image classification, it is often beneficial to consider each feature type separately, and combine the classification results in the final classifier. We present a classifier combination strategy that is based on classification result vector, CRV. It can be applied both in supervised and unsupervised manner. In this paper we apply our classifier combination method to the classification of rock images that are non-homogenous in terms of their color and texture properties.

References

  1. 1.
    Alkoot, F.M., Kittler, J.: Experimental evaluation of expert fusion strategies. Pattern Recognition Letters 20, 1361–1369 (1999)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Bagging predictors. Machine Learning 26, 123–140 (1996)Google Scholar
  3. 3.
    Brunelli, R., Falavigna, D.: Person Identification Using Multiple Cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 955–966 (1995)CrossRefGoogle Scholar
  4. 4.
    Cao, J., Ahmadi, M., Shridhar, M.: Recognition of Handwritten Numerals with Multiple Feature and Multistage Classifier. Pattern Recognition 28, 153–160 (1995)CrossRefGoogle Scholar
  5. 5.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  6. 6.
    Duin, R.P.W.: The Combining Classifier: to Train or Not to Train. In: Proceedings of 16th International Conference on Pattern Recognition, vol. 2, pp. 765–770 (2002)Google Scholar
  7. 7.
    Freund, Y., Shaphire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55, 119–139 (1995)CrossRefGoogle Scholar
  8. 8.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering, a review. ACM Computing Surveys 31, 265–323 (1999)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K., Prabhakar, S., Chen, S.: Combining Multiple Matchers for a High Security Fingerprint Verification System. Pattern Recognition Letters 20, 1371–1379 (1999)CrossRefGoogle Scholar
  10. 10.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 226–239 (1998)CrossRefGoogle Scholar
  11. 11.
    Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification Method for Colored Natural Textures Using Gabor Filtering. In: Proceedings of 12th International Conference on Image Analysis and Processing, pp. 397–401 (2003)Google Scholar
  12. 12.
    Lepistö, L., Kunttu, I., Autio, J., Visa, A.: Classification of Non-homogenous Textures by Combining Classifiers. In: Proceedings of IEEE International Conference on Image Processing, vol. 1, pp. 981–984 (2003)Google Scholar
  13. 13.
    Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters 24, 1959–1969 (2003)CrossRefGoogle Scholar
  14. 14.
    Lu, X., Wang, Y., Jain, A.K.: Combining Classifiers for Face Recognition. In: Proceedings of International Conference on Multimedia and Expo, vol. 3, pp. 13–16 (2003)Google Scholar
  15. 15.
    Manjunath, B.S., Ma, W.Y.: Texture Features for Browsing and Retrieval of image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)CrossRefGoogle Scholar
  16. 16.
    Manjunath, B.S., Ohm, J.-R., Vasuvedan, V.V., Yamada, A.: Color and Texture Descriptors. IEEE Transactions on Circuits and Systems for Video Technology 11, 703–715 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Leena Lepistö
    • 1
  • Iivari Kunttu
    • 1
  • Jorma Autio
    • 2
  • Ari Visa
    • 1
  1. 1.Institute of Signal ProcessingTampere University of TechnologyTampereFinland
  2. 2.Saanio & Riekkola Consulting EngineersHelsinkiFinland

Personalised recommendations