Soccer Videos Highlight Prediction and Annotation in Real Time

  • M. Bertini
  • A. Del Bimbo
  • W. Nunziati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


In this paper, we present an automatic system that is able to forecast the appearance of a soccer highlight, and annotate it, based on MPEG features; processing is performed in strict real time. A probabilistic framework based on Bayes networks is used to detect the most significant soccer highlights. Predictions are validated by different Bayes networks, to check the outcome of forecasts.


Bayesian Network Attack Action Goal Post Sport Video Soccer Video 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhou, W., Vellaikal, A., Kuo, C.C.J.: Rule-based video classification system for basketball video indexing. In: ACM Multimedia 2000 workshop, pp. 213–226 (2001)Google Scholar
  2. 2.
    Nepal, S., Srinivasan, U., Reynolds, G.: Automatic detection of ‘goal’ segments in basketball videos. In: Proc. of ACM Multimedia, pp. 261–269 (2001)Google Scholar
  3. 3.
    Intille, S.S., Bobick, A.F.: Recognizing planned, multi-person action. Computer Vision and Image Understanding 81(3), 414–445 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kijak, E., Gravier, G., Oisel, L., Gros, P.: Audiovisual integration for tennis broadcast structuring. In: CBMI 2003, Rennes, France, pp. 421–428 (2003)Google Scholar
  5. 5.
    Choi, S., Seo, Y., Kim, H., Hong, K.-S.: Where are the ball and players? soccer game analysis with color-based tracking and image mosaic. In: Proc. of Int’l Conference on Image Analysis and Processing (1997)Google Scholar
  6. 6.
    Gong, Y., Sin, L.T., Chuan, C.H., Zhang, H., Sakauchi, M.: Automatic parsing of tv soccer programs. In: Proc. of IEEE Int’l Conference on Multimedia Computing and Systems, pp. 15–18 (1995)Google Scholar
  7. 7.
    Leonardi, R., Migliorati, P.: Semantic indexing of multimedia documents. IEEE Multimedia 9(2), 44–51 (2002)CrossRefGoogle Scholar
  8. 8.
    Assfalg, J., Bertini, M., Del Bimbo, A., Nunziati, W., Pala, P.: Soccer highlights detection and recognition using hmms. In: Proc. of Int’l Conf. on Multimedia and Expo (ICME 2002) (2002)Google Scholar
  9. 9.
    Ekin, A., Murat Tekalp, A., Mehrotra, R.: Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)CrossRefGoogle Scholar
  10. 10.
    Assfalg, J., Bertini, M., Colombo, C., Del Bimbo, A., Nunziati, W.: Semantic annotation of soccer videos: automatic highlights identification. Computer Vision and Image Understanding 92(2-3), 285–305 (2003)CrossRefGoogle Scholar
  11. 11.
    Yu, X., Xu, C., Leung, H.W., Tian, Q., Tang, Q., Wan, K.W.: Trajectory-based ball detection and tracking with applications to semantic analysis of broadcast soccer video. In: ACM Multimedia 2003, Berkeley, CA (USA), November 4-6., pp. 11–20 (2003)Google Scholar
  12. 12.
    Petkovic, M., Mihajlovic, V., Jonker, W.: Multi-modal extraction of highlights from tv formula 1 programs. In: Proc. of IEEE Int’l Conference on Multimedia & Expo (2002)Google Scholar
  13. 13.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Bertini
    • 1
  • A. Del Bimbo
    • 1
  • W. Nunziati
    • 1
  1. 1.Università di FirenzeFirenzeItalia

Personalised recommendations