Advertisement

Efficient Shape Matching Using Weighted Edge Potential Functions

  • Minh-Son Dao
  • Francesco G. B. DeNatale
  • Andrea Massa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)

Abstract

An efficient approach to shape matching in digital images is presented. The method, called Weighted Edge Potential Function, is a significant improvement of the EPF similarity measure, which models the image edges as charged elements in order to generate a field of attraction over similarly shaped objects. Experimental results and comparisons demonstrate that WEPF enhances the properties of EPF and outperforms traditional similarity metrics in shape matching applications, in particular in the presence of noise and clutter.

Keywords

Similarity Measure Image Retrieval Target Image Edge Point Shape Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing 27, 321–345 (1984)CrossRefGoogle Scholar
  2. 2.
    Borgefors, G.: Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm. IEEE Transactions on Pattern Analysis and Matching Intelligence 10(6), 849–865 (1988)CrossRefGoogle Scholar
  3. 3.
    Dao, M.S., De Natale, F.G.B., Massa, A.: Edge potential functions and genetic algorithms for shape-based image retrieval. In: Proceedings of IEEE In-ternational conference on image processing (ICIP 2003), vol. 3, pp. 729–732 (2003)Google Scholar
  4. 4.
    Dao, M.S., De Natale, F.G.B., Massa, A.: MPEG-4 Video Retrieval using Video-Objects and Edge Potential Functions. In: Lecture notes of Pacific-Rim Conference on Multimedia (2004)Google Scholar
  5. 5.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Com-paring Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)CrossRefGoogle Scholar
  6. 6.
    Stratton, J.A.: Electromagnetic Theory. McGraw-Hill Book, NY (1941)zbMATHGoogle Scholar
  7. 7.
    Veltkamp, R.C., Hagedoorn, M.: State-of-the-Art in Shape Matching. In: Principles of visual information retrieval, pp. 87–119. Springer, London (2000) ISBN:1-85233-381-2Google Scholar
  8. 8.
    Van der Weken, D., Nachtegael, M., Kerre, E.E.: An overview of similarity measures for images. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2002), May 13-17, vol. 4, pp. IV-3317 - IV-3320 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Minh-Son Dao
    • 1
  • Francesco G. B. DeNatale
    • 1
  • Andrea Massa
    • 1
  1. 1.DITUniversity of TrentoTrentoItaly

Personalised recommendations