Computing Homographies from Three Lines or Points in an Image Pair

  • G. López-Nicolás
  • J. J. Guerrero
  • O. A. Pellejero
  • C. Sagüés
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


This paper deals with the computation of homographies from two views in a multi-plane scene. In the general case, homographies can be determined using four matched points or lines belonging to planes. We propose an alternative method when a first homography has been obtained, and then three matches are sufficient to compute a second homography. This process is based on the geometric constraint introduced by the first homography. In this work, the extraction and matching of features, points or lines, is automatically performed using robust techniques. Experimental results with synthetic data and real images show the advantages of this approach. Besides, the performance using points or lines as image features is compared.


Homographies multi-plane scenes multi-view constraints point and line matching 


  1. 1.
    Luong, Q., Faugeras, O.D.: Determining the fundamental matrix with planes: Unstability and new algorithms. In: Proc. Conference on Computer Vision and Pattern Recognition, pp. 489–494 (1993)Google Scholar
  2. 2.
    Vincent, E., Laganière, R.: Detecting planar homographies in an image pair. In: Proc. Second International Symposium on Image and Signal Processing and Analysis, pp. 182–187 (2001)Google Scholar
  3. 3.
    Shashua, A., Avidan, S.: The rank 4 constraint in multiple (≥ 3) view geometry. In: Proc. European Conf. Computer Vision, St. Louis, Missouri, pp. 196–206 (1996)Google Scholar
  4. 4.
    Zelnik-Manor, L., Irani, M.: Multiview subspace constraints on homographies. In: Proc. Int. Conf. Computer Vision, St. Louis, Missouri, pp. 710–715 (1999)Google Scholar
  5. 5.
    Zelnik-Manor, L., Irani, M.: Multiview constraints on homographies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 214–223 (2002)CrossRefGoogle Scholar
  6. 6.
    Pellejero, O., Sagüés, C., Guerrero, J.: Automatic computation of fundamental matrix from matched lines. In: Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS (LNAI), vol. 3040, pp. 197–206. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Guerrero, J., Sagüés, C.: Robust line matching and estimate of homographies simultaneously. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 297–307. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  9. 9.
    Van-Gool, L., Proesmans, M., Zisserman, A.: Grouping and invariants using planar homologies. In: Workshop on Geometrical Modeling and Invariants for Computer Vision (1995)Google Scholar
  10. 10.
    Criminisi, A., Reid, I., Zisserman, A.: Duality, rigidity and planar parallax. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 846–861. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    López-Nicolás, G., Sagüés, C., Guerrero, J.: Automatic matching and motion estimation from two views of a multiplane scene. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 69–76. Springer, Heidelberg (2005) (to appear)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • G. López-Nicolás
    • 1
  • J. J. Guerrero
    • 1
  • O. A. Pellejero
    • 1
  • C. Sagüés
    • 1
  1. 1.DIIS – I3AUniversidad de Zaragoza.ZaragozaSpain

Personalised recommendations