Enhancement of Noisy Images with Sliding Discrete Cosine Transform

  • Vitaly Kober
  • Erika Margarita Ramos Michel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)

Abstract

Enhancement of noisy images using a sliding discrete cosine transform (DCT) is proposed. A minimum mean-square error estimator in the domain of a sliding DCT for noise removal is derived. This estimator is based on a fast inverse sliding DCT transform. Local contrast enhancement is performed by nonlinear modification of denoised local DCT coefficients. To provide image processing in real time, a fast recursive algorithm for computing the sliding DCT is utilized. The algorithm is based on a recursive relationship between three subsequent local DCT spectra. Computer simulation results using a real image are provided and discussed.

Keywords

Discrete Cosine Transform Discrete Fourier Transform Image Enhancement Noisy Image Discrete Cosine Transform Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oppenheim, A.V., Shafer, R.W., Stockham Jr., T.G.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8), 1264–1291 (1968)CrossRefGoogle Scholar
  2. 2.
    Schreiber, W.F.: Wirephoto quality improvement by unsharp masking. Pattern recognition 2(4), 117–121 (1970)CrossRefGoogle Scholar
  3. 3.
    Hummel, R.A.: Image enhancement by histogram transformation. Comp. Graph. Image process. 6, 184–195 (1977)CrossRefGoogle Scholar
  4. 4.
    Ramponi, G., Strobel, N., Mitra, S.K., Yu, T.: Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imag. 5, 353–366 (1996)CrossRefGoogle Scholar
  5. 5.
    Ramponi, G.: A cubic unsharp masking technique for contrast enhancement. Signal Processing 67, 211–222 (1998)MATHCrossRefGoogle Scholar
  6. 6.
    Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)CrossRefGoogle Scholar
  7. 7.
    Kober, V., Mozerov, M., Alvarez-Borrego, J., Ovseyevich, I.A.: Unsharp masking using rank-order filters with spatially adaptive neighborhoods. Pattern Recognition and Image Analysis 12(1), 46–56 (2002)Google Scholar
  8. 8.
    Oppenheim, A.V., Shafer, R.W.: Discrete-time signal processing. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  9. 9.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1999)MATHGoogle Scholar
  10. 10.
    Vitkus, R.Y., Yaroslavsky, L.P.: Recursive algorithms for local adaptive linear filtration. In: Mathematical Research, pp. 34–39. Academy Verlag, Berlin (1987)Google Scholar
  11. 11.
    Jain, A.K.: Fundamentals of digital image processing. Prentice-Hall, NY (1989)MATHGoogle Scholar
  12. 12.
    Kober, V.: Fast algorithms for the computation of sliding discrete sinusoidal transforms. IEEE Trans. on Signal Process. 52(6), 1704–1710 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hou, H.S.: A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. 35(10), 1455–1461 (1987)CrossRefGoogle Scholar
  14. 14.
    Yaroslavsky, L., Eden, M.: Fundamentals of digital optics. Birkhäuse, Boston (1996)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vitaly Kober
    • 1
  • Erika Margarita Ramos Michel
    • 2
  1. 1.Department of Computer ScienceCICESEEnsenadaMexico
  2. 2.University of ColimaColimaMexico

Personalised recommendations