Automatic Updating of Urban Vector Maps

  • S. Ceresola
  • A. Fusiello
  • M. Bicego
  • A. Belussi
  • V. Murino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)

Abstract

In this paper we propose an automatic updating system for urban vector maps that is able to detect changes between the old dataset (consisting of both vector and raster maps) and the present time situation represented in a raster map. In order to automatically detect as much changes as possible and to extract vector data for new buildings we present a system composed of three main parts: the first part detects changes between the input vector map and the new raster map (based on edge matching), the second part locates new objects (based on color segmentation), and the third part extracts new objects boundaries to be used for updating the vector map (based on edge detection, color segmentation and adaptive edge linking). Experiments on real datasets illustrate the approach.

Keywords

Geographical Information System Vector Data Aerial Image Color Segmentation Edge Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Meisels, A., Bergman, S.: Finding objects in aerial photographs: a rule-based low level system. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 118–122 (1988)Google Scholar
  2. 2.
    Mayer, H.: Automatic object extraction from aerial imagery: A survey focusing on buildings. Computer Vision and Image Understanding 74, 138–149 (1999)CrossRefGoogle Scholar
  3. 3.
    Auclair-Fortier, M.F., Ziou, D., Armenakis, C., Wang, S.: Survey of Work on Road Extraction in Aerial and Satellite Images. Technical Report 247, Département de mathématiques et d’informatique, Université de Sherbrooke (2000)Google Scholar
  4. 4.
    Bicego, M., Dalfini, S., Murino, V.: Extraction of geographical entities from aerial images. In: Proc. of IEEE Workshop on Remote Sensing and Data fusion over Urban Areas (URBAN 2003), pp. 125–128 (2003)Google Scholar
  5. 5.
    Bicego, M., Dalfini, S., Vernazza, G., Murino, V.: Automatic road extraction from aerial images by probabilistic contour tracking. In: Proc. of IEEE Int. Conf. on Image Processing, vol. 3, pp. 585–588 (2003)Google Scholar
  6. 6.
    Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases with Application to GIS. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  7. 7.
    Walter, V., Fritsch, D.: Automated revision of gis databases. In: Proc. of the ACM GIS 2000, pp. 129–134 (2000)Google Scholar
  8. 8.
    Walter, V.: Automatic classification of remote sensing data for gis database revision. In: International Archives of Photogrammetry and Remote Sensing XXXII, pp. 641–648 (1998)Google Scholar
  9. 9.
    Agouris, P., Monuntrakis, G., Stefanidis, A.: Automated spatiotemporal change detection in digital aerial imagery. In: Proc. of SPIE Aerosense 2000, Orlando, FL (2000)Google Scholar
  10. 10.
    Mountrakis, G., Agouris, P., Stefanidis, A.: Navigating through hierarchical change propagation in spatiotemporal queries. In: Proc. of the IEEE Time 2000 Workshop, pp. 123–131 (2000)Google Scholar
  11. 11.
    Castleman, K.: Digital Imgage Processing. Prentice-Hall, Englewood Cliffs (1996)Google Scholar
  12. 12.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Analysis Machine Intelligence 8, 679–698 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • S. Ceresola
    • 1
  • A. Fusiello
    • 1
  • M. Bicego
    • 1
  • A. Belussi
    • 1
  • V. Murino
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations