Face and Facial Feature Localization

  • Paola Campadelli
  • Raffaella Lanzarotti
  • Giuseppe Lipori
  • Eleonora Salvi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


In this paper we present a general technique for face and facial feature localization in 2D color images with arbitrary background. In a previous work we studied an eye localization module, while here we focus on mouth localization. Given in input an image that depicts a sole person, first we exploit the color information to limit the search area to candidate mouth regions, then we determine the exact mouth position by means of a SVM trained for the purpose. This component-based approach achieves the localization of both the faces and the corresponding facial features, being robust to partial occlusions, pose, scale and illumination variations. We report the results of the separate modules of the single feature classifiers and their combination on images of several public databases.


Face and feature localization skin color model Support Vector Machine (SVM) 


  1. 1.
    Brand, J.D., Mason, J.S.D.: A skin probability map and its use in face detection. In: Proceedings of International Conference on Image Processing (2001)Google Scholar
  2. 2.
    Campadelli, P., Lanzarotti, R., Lipori, G.: Face localization in color images with complex background. In: Proceedings of the IEEE International Workshop on Computer Architecture for Machine Perception (CAMP 2005), Palermo, Italy (2005) (to appear)Google Scholar
  3. 3.
    The BANCA database. Web address,
  4. 4.
    The FERET Database (2001), Web address
  5. 5.
    The XM2VTS Database (2001), Web address
  6. 6.
    Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based vesus global approaches. Computer Vision and Image Understanding 91, 6–21 (2003)CrossRefGoogle Scholar
  7. 7.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 212–227. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Martinez, A.M., Benavente, R.: The ar face database. CVC 24 (June 1998)Google Scholar
  9. 9.
    Osuna, E., Freund, R., Girosi, F.: Training support vector machines:an application to face detection. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, CVPR 1997 (1997)Google Scholar
  10. 10.
    Smeraldi, F., Bigun, J.: Retinal vision applied to facial features detection and face authentication. Pattern recognition letters 23, 463–475 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Terrillon, J.C., Shirazi, M.N., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance for the automatic detection of human faces in color images. In: Proceedings of the IEEE International conference of Face and Gesture Recognition, pp. 54–61 (2000)Google Scholar
  12. 12.
    Yang, M., Ahuja, N.: Gaussian mixture model for human skin color and its applications in image and video databases. In: SPIE Proceedings Storage and Retrieval for Image and Video Databases VII, January 23-29, San Jose, CA, USA, pp. 458–466 (1999)Google Scholar
  13. 13.
    Zhang, Y., Martinez, A.M.: Recognizing imprecisely localized, partially occluded and expression variant faces from a single sample per class. In: Proceedings of International Conference on Pattern Recognition (ICPR 2004) (2004)Google Scholar
  14. 14.
    Zhou, J., Lu, X., Zhang, D., Wu, C.: Orientation analysis for rotated human face detection. Image and Vision Computing 20, 239–246 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paola Campadelli
    • 1
  • Raffaella Lanzarotti
    • 1
  • Giuseppe Lipori
    • 1
  • Eleonora Salvi
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations