UBIRIS: A Noisy Iris Image Database

  • Hugo Proença
  • Luís A. Alexandre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)

Abstract

This paper presents a new iris database that contains images with noise. This is in contrast with the existing databases, that are noise free. UBIRIS is a tool for the development of robust iris recognition algorithms for biometric proposes.

We present a detailed description of the many characteristics of UBIRIS and a comparison of several image segmentation approaches used in the current iris segmentation methods where it is evident their small tolerance to noisy images.

Keywords

Image Database Biometric System Outer Border Iris Recognition CASIA Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8, 679–698Google Scholar
  3. 3.
    Cui, J., Wang, Y., Tan, T., Ma, L., Sun, Z.: A fast and robust iris localization method based on texture segmentation (2004), http://nlpr-web.ia.ac.cn/english/irds/papers/cuijl/SPIE.pdf
  4. 4.
    Daugman, J.G.: High confidence visual recognition of persons by a teste of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  5. 5.
    Dempster, A.P., Laird, N., Rubin, D.: Maximum likelyhood from incomplete data via the em algorithm. Journal of the Royal Statistic Society 39, 1–38 (1977)MATHMathSciNetGoogle Scholar
  6. 6.
    Dobes, M., Machala, L.: Upol iris image database (2004), http://phoenix.inf.upol.cz/iris/
  7. 7.
    Du, Y., Ives, R., Etter, D., Welch, T., Chang, C.: A new approach to iris pattern recognition. In: SPIE European Symposium on Optics/Photonics in Defence and Security (2004)Google Scholar
  8. 8.
    Emigh, J.: The eyes have it (2003), http://securitysolutions.com/mag/security/_eyes
  9. 9.
    Floom, L., Safir, A.: Iris recognition system, u.s. patent no. 4.641.349 (1987)Google Scholar
  10. 10.
    Hough, P.V.C.: Method and means for recognizing complex patterns, U.S. Patent 3 069 654 (1962)Google Scholar
  11. 11.
    Huang, J., Wang, Y., Tan, T., Cui, J.: A new iris segmentation method for recognition. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004) (2004)Google Scholar
  12. 12.
    Chinese Academy of Sciences Institute of Automation. Casia iris image database (2004), http://www.sinobiometrics.com
  13. 13.
    Kim, J., Cho, S., Choi, J.: Iris recognition using wavelet features. Journal of VLSI Signal Processing (38), 147–156 (2004)Google Scholar
  14. 14.
    Kong, W.K., Zhang, D.: Accurate iris segmentation method based on novel reflection and eyelash detection model. In: Proceedings of 2001 International Symposium on Inteligent Multimedia, Video and Speech Processing, Hong Kong (May 2001)Google Scholar
  15. 15.
    Kovesi, P.: Matlab functions for computer vision and image analysis (2004), http://cs.uwa.edu.au/~pk/Research/MatlabFns/
  16. 16.
    Liam, L., Chekima, A., Fan, L., Dargham, J.: Iris recognition using self-organizing neural network. In: IEEE, 2002 Student Confderence on Research and Developing Systems, Malasya, pp. 169–172 (2002)Google Scholar
  17. 17.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  18. 18.
    Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel gabor filtering. In: ACCV2002: The 5th Asian Conference on Computer Vision, Australia (2002)Google Scholar
  19. 19.
    Ma, L., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Transactions on Image Processing 13(6), 739–750 (2004)CrossRefGoogle Scholar
  20. 20.
    Masek, L.: Recognition of human iris patterns for biometric identification (2003), http://www.csse.uwa.edu.au/~pk/studentprojects/libor
  21. 21.
    Mira, J., Mayer, J.: Image feature extraction for application of biometric identification of iris - a morphological approach. In: IEEE Proceedings of the XVI Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003) (2003)Google Scholar
  22. 22.
    Muron, A., Pospisil, J.: The human iris structure and its usages. In: Acta Univ. Palacki, Phisica, vol. 39, pp. 87–95 (2000)Google Scholar
  23. 23.
    Nishino, K., Nayar, S.K.: Eyes for relighting. ACM Trans. Graph. 23(3), 704–711 (2004)CrossRefGoogle Scholar
  24. 24.
    Pratt, W.K.: Digital Image Processing. Wiley, U.S.A. (1978)Google Scholar
  25. 25.
    Proença, H., Alexandre, L.A.: Ubiris iris image database (2004), http://iris.di.ubi.pt
  26. 26.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  27. 27.
    Williams, G.: Iris recognition technology, iridian technologies, Inc. (2001), http://www.argus-solutions.com/pdfs/irisrecogwilliams.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hugo Proença
    • 1
  • Luís A. Alexandre
    • 1
  1. 1.Dep. InformaticsUniversidade da Beira Interior, IT – Networks and Multimedia Group, CovilhãCovilhãPortugal

Personalised recommendations