Volume Estimation from Uncalibrated Views Applied to Wound Measurement

  • B. Albouy
  • S. Treuillet
  • Y. Lucas
  • J. C. Pichaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3617)


The aim of the ESCALE project is to supply the medical staff with objective and accurate 2D and 3D measurements for wound healing assessment from color images acquired in a free manner with a low cost digital camera. The problem addressed in this paper is the volume estimation from uncalibrated views. We present two experimentations. A Monte Carlo simulation on synthetic perturbated data leads to an average error of 3% on reconstructed points. Then, triangulation based volume estimation obtained from two uncalibrated real images gives us hope that an accuracy less than 5% is achievable. So this technique is suited to accurate wound 3D measurements. Combined with true color image processing for colorimetric tissue assessment, a such low cost system will be appropriate tool for diagnosis assistance and therapy monitoring in clinical environment.


Delaunay Triangulation Volume Estimation Fundamental Matrix Reconstructed Point Average Distance Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Keast, D.H., et al.: MEASURE: A proposed assessment framework for developing best practice recommendations for wound assessment. Wound Repair and Regeneration  12, s1–s17 (2004)Google Scholar
  2. 2.
    Rosie, P.: Measuring wounds (2002),
  3. 3.
    Herbin, M., Bon, F.X., Venot, A., Jenlouis, F., Dubertret, M.L.: Assessment of healing kinetics through true color image processing. IEEE Transactions on Medical Imaging 12-1, 39–43 (1993)CrossRefGoogle Scholar
  4. 4.
    Bon, F.X., Briand, E., Guichard, S., Couturaud, B., Reval, M., Servant, J.M., Dubertret, L.: Quantitative and kinetic evolution of wound healing through image analysis. IEEE Transactions on Medical Imaging 19-7, 767–772 (2000)CrossRefGoogle Scholar
  5. 5.
    Plassmann, P., Jones, B.F., Ring, E.F.J.: A structured light system for measuring wounds. Photogrammetric Record 15(86), 197–203 (1995)CrossRefGoogle Scholar
  6. 6.
    Plassman, P., Jones, T.D.: MAVIS: a non-invasive instrument to measure area and volume of wounds. Med. Eng. Phys. 20-5, 332–338 (1998)CrossRefGoogle Scholar
  7. 7.
    Boersma, S.M., Van den Heuvel, F.A., Cohen, A.F., Scholtens, R.E.M.: Photogrammetric wound measurement with a three-camera vision system. In: IAPRS, Amsterdam, vol. XXXIII (2000)Google Scholar
  8. 8.
    Malian, A., Heuvel Van Den, F.A., Azizi, A.: A Robust Photogrammetric System for Wound Measurement. In: ISPRS Symposium commission V Corfu Greece International Archives of Photogrammetry and Remote Sensing, vol. 34 Part 5, pp. 264–269 (2002)Google Scholar
  9. 9.
    Krouskop, T.A., et al.: A non contact wound measurement system. Journal of Rehabilitattion R&D 39(3), 337–346 (2002)Google Scholar
  10. 10.
    Romanelli, M., et al.: Technical advances in wound bed measurement. In: WOUNDS, pp. 14 –58 (2002)Google Scholar
  11. 11.
    Pollefeys, M.: Self-Calibration and Metric 3D Reconstruction From Uncalibrated Image Sequences. PhD Thesis of the Catholic University of Leuven (1999)Google Scholar
  12. 12.
    Gouet, V.: Mise en correspondance d’images en couleurs, application à la synthèse de vues intermediaires, Thèse de Doctorat de l’Université de Montpellier II Sciences et Techniques du Languedoc (2000)Google Scholar
  13. 13.
    Torr, P.H.: Bayesian Model Estimation and Selection for Epipolar Geometry and Generic Manifold Fitting. International Journal of Computer Vision 50-1, 35–61 (2002)Google Scholar
  14. 14.
    Sturm, P.: On Focal Length Calibration from Two Views. In: Conference on Computer Vision and Pattern Recognition, vol. II, pp. 145–150 (2001)Google Scholar
  15. 15.
    Albouy, B., Treuillet, S., Lucas, Y., Birov, D.: Fundamental matrix estimation revisited through a global 3D reconstruction framework. In: IEEE ACIVS Bruxelles, 185–192 (2004)Google Scholar
  16. 16.
    Torr, P.H., Zisserman, A.: Performance characterization of fundamental matrix estimation under image degradation. Machine Vision & Application 9, 321–333 (1997)CrossRefGoogle Scholar
  17. 17.
    De Floriani, K., Puppo, E.: An on-line algorithm for Delaunay triangulation. Graphic Models and Image processing 54(3), 290–300 (1992)CrossRefGoogle Scholar
  18. 18.
    Sturm, P.: Vision 3D non calibrée: Contributions à la reconstruction projective et études des mouvements critiques pour l’auto-calibrage. Thèse de Doctorat au Laboratoire GRAVIR – IMAG de l’INRIA Rhône-Alpes (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. Albouy
    • 1
  • S. Treuillet
    • 2
  • Y. Lucas
    • 1
  • J. C. Pichaud
    • 3
  1. 1.Laboratoire Vision & RobotiqueUniversité d’Orléans, ENSIBourgesFrance
  2. 2.Polytech’OrléansOrléansFrance
  3. 3.Hôpital La Tour BlancheIssoudunFrance

Personalised recommendations