Skip to main content

A Co-evolutionary Epidemiological Model for Artificial Life and Death

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3630)

Abstract

This paper presents a model of the co-evolution of transmissible disease and a population of non-randomly mixed susceptible agents. The presence of the disease elements is shown to prevent the onset of genetic convergence of the agent population. The epidemiological model also acts in a distributed fashion to counter the tendency of the agent population to occupy spatially close-knit communities. The simulation applies a modified mathematical SIR epidemiological model of disease transmission in combination with the well-studied technique of artificial ecosystems. It includes various aspects of disease transmission that are not usually modelled due to the effort required to incorporate them into mathematical models. These include a distributed agent population with non-uniform infectiousness and immunity as well as a mutable disease model with evolving latency and infections that evolve to prey on diverse agent characteristics.

Keywords

  • Epidemiological model
  • co-evolution
  • artificial death
  • ecosystem

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11553090_78
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31816-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   189.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dorin, A.: The Virtual Ecosystem as Generative Electronic Art. In: 2nd European Workshop on Evolutionary Music and Art, Applications of Evolutionary Computing: EvoWorkshops 2004, Coimbra, Portugal, pp. 467–476. Springer, Heidelberg (2004)

    Google Scholar 

  • Yaeger, L.: Computational Genetics, Physiology, Metabolism, Neural Systems, Learning, Vision and Behavior or Polyworld: Life in a New Context. In: Artificial Life III, pp. 263–298. Addison-Wesley, Reading (1992)

    Google Scholar 

  • Todd, P.M.: Artificial Death. Jahresing 41, 90–107 (1994) (German modern art yearbook)

    Google Scholar 

  • Mascaro, S., Korb, K.B., Nicholson, A.E.: Suicide as an Evolutionary Stable Strategy. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 120–133. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  • Ray, T.S.: An Approach to the Synthesis of Life. In: Artificial Life II, Santa Fe, New Mexico, pp. 371–408. Addison Wesley, Reading (1990)

    Google Scholar 

  • Cartlidge, J., Bullock, S.: Caring Versus Sharing: How to Maintain Engagement and Diversity in Coevolving Populations. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 299–308. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  • Hillis, W.D.: Co-Evolving Parasites Improve Simulated Evolution as an Optimization Procedure. In: Artificial Life II, Santa Fe, New Mexico, pp. 313–324. Addison-Wesley, Reading (1990)

    Google Scholar 

  • Ackerman, E., Elvebeck, L.R., Fox, J.P.: Simulation of Infectious Disease Epidemics. Charles C Thomas Springfield, Illinois (1984)

    Google Scholar 

  • Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and Its Applications, vol. 2. Charles Griffin & Company, London (1975)

    MATH  Google Scholar 

  • Durrett, R., Levin, S.: The Importance of Being Discrete (and Spatial). Theoretical Population Biology 46(3), 363–394 (1994)

    MATH  CrossRef  Google Scholar 

  • Willox, R., Grammaticos, B., Carstea, A.S., Ramani, A.: Epidemic Dynamics: Discrete-Time and Cellular Automaton Models. Physica A 328, 13–22 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  • Martins, M.L., Ceotto, G., Alves, S.G., Bufon, C.C.B., Silva, J.M., Laranjeira, F.F.: A Cellular Automata Model for Citrus Variagated Chlorosis  10 (2000) eprint arXiv: cond-mat/0008203

    Google Scholar 

  • Pilot Projects for Models of Infectious Disease Agent Study (Midas). Webpage. National Institute of General Medical Sciences (NIGMS) (Accessed: October 2004), http://grants.nih.gov/grants/guide/rfa-files/RFA-GM-03-008.html

  • Kermack, W.O., McKendrick, A.G.: Contributions to the Mathematical Theory of Epidemics. Proceedings of the Royal Society, London 115, 700–721 (1927)

    CrossRef  Google Scholar 

  • Dorin, A.: Artificial Life, Death and Epidemics in Evolutionary, Generative Electronic Art. In: Rothlauf, F. (ed.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 448–457. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dorin, A. (2005). A Co-evolutionary Epidemiological Model for Artificial Life and Death. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_78

Download citation

  • DOI: https://doi.org/10.1007/11553090_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)