Self-replication and Evolution of DNA Crystals

  • Rebecca Schulman
  • Erik Winfree
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)


Is it possible to create a simple physical system that is capable of replicating itself? Can such a system evolve interesting behaviors, thus allowing it to adapt to a wide range of environments? This paper presents a design for such a replicator constructed exclusively from synthetic DNA. The basis for the replicator is crystal growth: information is stored in the spatial arrangement of monomers and copied from layer to layer by templating. Replication is achieved by fragmentation of crystals, which produces new crystals that carry the same information. Crystal replication avoids intrinsic problems associated with template-directed mechanisms for replication of one-dimensional polymers. A key innovation of our work is that by using programmable DNA tiles as the crystal monomers, we can design crystal growth processes that apply interesting selective pressures to the evolving sequences. While evolution requires that copying occur with high accuracy, we show how to adapt error-correction techniques from algorithmic self-assembly to lower the replication error rate as much as is required.


State Machine Tile Type Royal Road Additional Tile Error Correction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Adleman, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. Symposium on Foundations of Computer Science (FOCS) 43, 530 (2002)Google Scholar
  3. 3.
    Cairns-Smith, A.G.: The origin of life and the nature of the primitive gene. Journal of Theoretical Biology 10, 53–88 (1966)CrossRefGoogle Scholar
  4. 4.
    Cairns-Smith, A.G.: The chemistry of materials for artificial Darwinian systems. International Revs. Phys. Chem. 7, 209–250 (1988)CrossRefGoogle Scholar
  5. 5.
    Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126(43), 13924–13925 (2004)CrossRefGoogle Scholar
  6. 6.
    Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Eigen, M.: Self-organization of matter and evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar
  8. 8.
    Fu, T.-J., Seeman, N.C.: DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993)CrossRefGoogle Scholar
  9. 9.
    Joyce, G.F.: Nonenzymatic template-directed synthesis of informational macromolecules. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. 52, pp. 41–51 (1987)Google Scholar
  10. 10.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: Construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122(9), 1848–1860 (2000)CrossRefGoogle Scholar
  11. 11.
    Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)CrossRefGoogle Scholar
  12. 12.
    Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms: Fitness landscapes and GA performance. In: Proceedings of the First European Conference on Artificial Life (1992)Google Scholar
  13. 13.
    Reif, J.H.: Local parallel biomolecular computation. In: Rubin, H., Wood, D.H. (eds.) DNA Based Computers III. DIMACS, vol. 48, pp. 217–254. American Mathematical Society, Providence (1997)Google Scholar
  14. 14.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 293–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLOS Biology 2, 424–436 (2004)CrossRefGoogle Scholar
  16. 16.
    Schulman, R., Winfree, E.: Controlling nucleation rates in algorithmic self-assembly. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Winfree, E.: Self healing tile sets for algorithmic self-assembly (in preparation)Google Scholar
  18. 18.
    Winfree, E.: On the computational power of DNA annealing and ligation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS, vol. 27, pp. 199–221. American Mathematical Society, Providence (1996)Google Scholar
  19. 19.
    Winfree, E.: Simulations of computing by self-assembly. Technical Report CS-TR:1998.22, Caltech (1998)Google Scholar
  20. 20.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error-correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rebecca Schulman
    • 1
  • Erik Winfree
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations