On a Quantitative Measure for Modularity Based on Information Theory

  • Daniel Polani
  • Peter Dauscher
  • Thomas Uthmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3630)


The concept of modularity appears to be crucial for many questions in the field of Artificial Life research. However, there have not been many quantitative measures for modularity that are both general and viable. In this paper we introduce a measure for modularity based on information theory. Due to the generality of the information theory formalism, this measure can be applied to various problems and models; some connections to other formalisms are presented.


Genetic Algorithm Mutual Information Modular Decomposition Intrinsic Information Tual Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zuser, W., Biffl, S., Grechenig, T., Köhle, M.: Software Engineering. Pearson Studium, London (2001)Google Scholar
  2. 2.
    Dauscher, P., Uthmann, T.: On self-organizing modularization of individuals in evolutionary scenarios. In: Polani, D., Kim, J., Martinetz, T. (eds.) Proc. Fifth German Workshop on Artificial Life, Lübeck, Germany, March 18-20, Akademische Verlagsgesellschaft Aka GmbH, Berlin (2002)Google Scholar
  3. 3.
    Dauscher, P.: Selbstorganisierte Modularisierung von Individuen in Evolutionären Algorithmen. PhD thesis, Johannes Gutenberg-Universität Mainz (2003)Google Scholar
  4. 4.
    Dauscher, P., Uthmann, T.: Self-organized modularity in evolutionary algorithms. Evolutionary Computation (2005) (to appear)Google Scholar
  5. 5.
    Winter, S.: Zerlegung von gekoppelten Dynamischen Systemen (Decomposition of Coupled Dynamical Systems. Diploma thesis, Johannes Gutenberg-Universität Mainz (1996) (in German)Google Scholar
  6. 6.
    Deco, G., Schuermann, B. (eds.): Information Dynamics: Foundations and Applications. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Ziv, E., Middendorf, M., Wiggins, C.: An information-theoretic approach to network modularity. Physical Review E, arXiv:q-bio.QM/0411033v1 (2005) (in press)Google Scholar
  8. 8.
    Eriksen, K.A., Simonsen, I., Maslov, S., Sneppen, K.: Modularity and extreme edges of the internet. Phys. Rev. Lett. 90, 148701 (2003)CrossRefGoogle Scholar
  9. 9.
    Magwene, P.: New tools for studying integration and modularity. Evolution 55(9), 1734–1745 (2001)Google Scholar
  10. 10.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)CrossRefGoogle Scholar
  11. 11.
    Watson, R.A.: Modular interdependency in complex dynamical systems. In: Bilotta, et al. (eds.) Workshop Proceedings of the 8th International Conference on the Simulation and Synthesis of Living Systems, UNSW Australia, December 2002 (2003)Google Scholar
  12. 12.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nicholas, J.: Radcliffe. The Algebra of Genetic Algorithms. Annals of Maths and Artificial Intelligence 10(4) (1994)Google Scholar
  14. 14.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, J.K.E. (ed.) Advances in Genetic Programming. MIT Press, Cambridge (1994)Google Scholar
  15. 15.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  16. 16.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Daniel Polani
    • 1
  • Peter Dauscher
    • 2
  • Thomas Uthmann
    • 2
  1. 1.University of HertfordshireHatfieldUK
  2. 2.Johannes Gutenberg Universität MainzGermany

Personalised recommendations