Skip to main content

Generating Contexts for Expression Data Using Pathway Queries

  • Conference paper
  • 421 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 3703)


The measurement of gene expression data using microarrays has become a standard high throughput method in many areas of biology and medicine. Despite some issues in quality and reproducibility of microarray and derived data [3,4], microarrays are still considered one of the most promising experimental techniques for the understanding of complex molecular mechanisms, and the analysis of gene expression data is still a very active area of research in bioinformatics and statistics.


  • Expression Data
  • Gene Expression Data
  • Biological Network
  • High Throughput Method
  • Subgraph Isomorphism

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11552222_15
  • Chapter length: 3 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-32028-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)


  1. Al-Shahrour, F., Diaz-Uriarte, R., Dopazo, J.: Fatigo: a web tool for finding significant associations of gene ontology terms with groups of genes.  20(4), 578–580 (January 2004)

    Google Scholar 

  2. Friedman, N.: Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303(5659), 799–805 (2004)

    CrossRef  Google Scholar 

  3. Marshall, E.: Getting the Noise Out of Gene Arrays. Science 306(5696), 630–631 (2004)

    CrossRef  Google Scholar 

  4. Michielis, S., Koscielny, S., Hill, C.: Prediction of cancer outcome with microarrays: a multiple random validation study. The Lancet 365, 488–492 (2005)

    CrossRef  Google Scholar 

  5. Mootha, V.K., Lindgren, C.M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E., et al: Pgc-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics 34(3), 267–273 (2003)

    CrossRef  Google Scholar 

  6. Palenchar, P.M., Kouranov, A., Lejay, L.V., Coruzzi, G.M.: Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. Genome Biology 5(11) (October 2004)

    Google Scholar 

  7. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., Church, G.: Automated modelling of signal transduction networks. BMC Bioinformatics 3(1), 34 (2002)

    CrossRef  Google Scholar 

  8. Zien, A., Kuffner, R., Zimmer, R., Lengauer, T.: Analysis of gene expression data with pathway scores. In: Proceedings of the International Conference of Intelligent Systems Molecular Biology, vol. 8, pp. 407–417 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sohler, F. (2005). Generating Contexts for Expression Data Using Pathway Queries. In: Fages, F., Soliman, S. (eds) Principles and Practice of Semantic Web Reasoning. PPSWR 2005. Lecture Notes in Computer Science, vol 3703. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28793-3

  • Online ISBN: 978-3-540-32028-9

  • eBook Packages: Computer ScienceComputer Science (R0)