Skip to main content

Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in \({\mathcal AL}\)-Log

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 3703)

Abstract

The design of the logical layer of the Semantic Web, and subsequently of the mark-up language SWRL, has renewed the interest in hybrid knowledge representation and reasoning. In this paper we discuss principles of inductive reasoning for this layer. To this aim we provide a general framework for learning in \({\mathcal AL}\)-log, a hybrid language that integrates the description logic \({\mathcal ALC}\) and the function-free Horn clausal language Datalog, thus turning out to be a small yet sufficiently expressive subset of SWRL. In this framework inductive hypotheses are represented as constrained Datalog clauses, organized according to the \({\mathcal B}\)-subsumption relation, and evaluated against observations by applying coverage relations that depend on the representation chosen for the observations. The framework is valid whatever the scope of induction (description vs. prediction) is. Yet, for illustrative purposes, we concentrate on an instantiation of the framework which supports description.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11552222_12
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-32028-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)

    Google Scholar 

  3. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling Up Inductive Logic Programming by Learning from Interpretations. Data Mining and Knowledge Discovery 3, 59–93 (1999)

    CrossRef  Google Scholar 

  4. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)

    CrossRef  MathSciNet  Google Scholar 

  5. Buntine, W.: Generalized subsumption and its application to induction and redundancy. Artificial Intelligence 36(2), 149–176 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)

    Google Scholar 

  7. De Raedt, L., Dehaspe, L.: Clausal Discovery. Machine Learning 26(2–3), 99–146 (1997)

    MATH  CrossRef  Google Scholar 

  8. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)

    CrossRef  Google Scholar 

  9. Flach, P.: Conjectures: An Inquiry concerning the Logic of Induction. Phd thesis, Tilburg University (1995)

    Google Scholar 

  10. Flach, P., Lavrač, N.: Learning in Clausal Logic: A Perspective on Inductive Logic Programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2407, pp. 437–471. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Frisch, A.M.: The substitutional framework for sorted deduction: Fundamental results on hybrid reasoning. Artificial Intelligence 49, 161–198 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Frisch, A.M.: Sorted downward refinement: Building background knowledge into a refinement operator for inductive logic programming. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 104–115. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  13. Frisch, A.M., Cohn, A.G.: Thoughts and afterthoughts on the 1988 workshop on principles of hybrid reasoning. AI Magazine 11(5), 84–87 (1991)

    Google Scholar 

  14. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

    Google Scholar 

  15. Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  16. Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  18. Lisi, F.A., Malerba, D.: Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 49–60. Springer, Heidelberg (2003)

    Google Scholar 

  19. Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  20. Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)

    MATH  CrossRef  Google Scholar 

  21. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

    CrossRef  Google Scholar 

  22. Reiter, R.: Equality and domain closure in first order databases. Journal of ACM 27, 235–249 (1980)

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics (2005) (to appear)

    Google Scholar 

  24. Rouveirol, C., Ventos, V.: Towards Learning in CARIN-\(\mathcal{ALN}\). In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  25. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  26. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lisi, F.A. (2005). Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in \({\mathcal AL}\)-Log. In: Fages, F., Soliman, S. (eds) Principles and Practice of Semantic Web Reasoning. PPSWR 2005. Lecture Notes in Computer Science, vol 3703. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11552222_12

Download citation

  • DOI: https://doi.org/10.1007/11552222_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28793-3

  • Online ISBN: 978-3-540-32028-9

  • eBook Packages: Computer ScienceComputer Science (R0)