Advertisement

CarpetLAN: A Novel Indoor Wireless(-like) Networking and Positioning System

  • Masaaki Fukumoto
  • Mitsuru Shinagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3660)

Abstract

CarpetLAN is a novel indoor wireless(-like) broad-band networking and positioning system. It uses the floor surface and the human body as an Ethernet-cable, and weak electric fields as the transmission media. Portable and wearable devices can connect to the network while the user stands or walks on the floor; connection speed is 10Mbps. Home and office appliances can also access the network if they are just put on the floor. CarpetLAN also provides an indoor positioning function, which is urgently needed for realizing “ubiquitous” communication. This electric field based transmission system yields ultra-micro communication cells, so the positions of humans and appliances can be detected with about 1 meter accuracy.

Keywords

Mobile Device Natural Rubber Relay Node Packet Error Rate Wearable Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-building RF-based User Location and Tracking System. In: Proc. of IEEE Infocom2000, vol. 2, pp. 775–784 (2000)Google Scholar
  2. 2.
    Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The Anatomy of a Context-Aware Application. In: Proc. of the ACM MOBICOM 1999, pp. 59–68 (1999)Google Scholar
  3. 3.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System. ACM Trans. on Information Systems 10, 91–102 (1992)CrossRefGoogle Scholar
  4. 4.
    Rekimoto, J.: SmartSkin: An Infrastructure for Freehand Manipulation on Interactive Surfaces. In: Proc. of ACM CHI 2002, pp. 113–120 (2002)Google Scholar
  5. 5.
    Dietz, P., Leigh, D.: DiamondTouch: A Multi-user Touch Technology. In: Proc. of ACM UIST2001, pp. 219–226 (2001)Google Scholar
  6. 6.
    Schmidt, A., Strohbach, M., Laerhoven, K.V., Friday, A., Gellersen, H.W.: Context Acquisition based on Load Sensing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 333–351. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: ORL Active Floor. IEEE Personal Communications 4(5), 35–41 (1997)CrossRefGoogle Scholar
  8. 8.
    Paradiso, J., Abler, C., Hsiao, K., Reynolds, M.: The Magic Carpet: Physical Sensing for Immersive Environments. In: Late-Breaking/Short Demonstrations of CHI 1997, pp. 277–278 (1997)Google Scholar
  9. 9.
    McElligott, L., Dillon, M., Leydon, K., Richardson, B., Fernstrom, M., Paradiso, J.: ForSe FIElds’ - Force Sensors for Interactive Environments. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 168–175. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gorbet, M.G., Orth, M., Ishii, H.: Triangles: Tangible Interface for Manipulation and Exploration of Digital Information Topography. In: Proc. of ACM CHI 1998, pp. 49–56 (1998)Google Scholar
  11. 11.
    Minami, M., Nishizawa, Y., Hirasawa, K., Morikawa, H., Aoyama, T.: MAGICSurfaces: Magnetically Interfaced Surfaces for Smart Space Applications. In: Adjunct Proc. of Pervasive2005, pp. 59–64 (2005)Google Scholar
  12. 12.
    Zimmerman, T.G.: Personal Area Networks: Near-field Intrabody Communication. IBM Systems Journal, Vol 35(3&4), 609–617 (1996)CrossRefGoogle Scholar
  13. 13.
    Fukumoto, M., Tonomura, Y.: Body Coupled FingeRing: Wireless Wearable Keyboard. In: Proc. of ACM CHI 1997, pp. 147–154 (1997)Google Scholar
  14. 14.
    Matsushita, N., Tajima, S., Ayatsuka, Y., Rekimoto, J.: Wearable Key: Device for Personalizing Nearby Environment. In: Proc. of IEEE ISWC 2000, pp. 119–126 (2000)Google Scholar
  15. 15.
    Doi, K., Koyama, M., Suzuki, Y., Nishimura, T.: Development of the communication module used human body as the transmission line. In: Proc. of Human Interface Symposium 2001, pp. 389–392 (2001) (in Japanese)Google Scholar
  16. 16.
    Partridge, K., Dahlquist, B., Veiseh, A., Cain, A., Foreman, A., Goldberg, J.: Empirical Measurements of Intrabody Communication Performance under Varied Physical Configurations. In: Proc. of ACM UIST 2001, pp. 183–190 (2001)Google Scholar
  17. 17.
    Shinagawa, M., Fukumoto, M., Ochiai, K., Kyuragi, H.: A Near-Field-Sensing Transceiver for Intrabody Communication Based on the Electrooptic Effect. Trans. on IEEE Inst. and Meas. 53(6), 1533–1538 (2004)CrossRefGoogle Scholar
  18. 18.
    Fukumoto, M., Shinagawa, M., Ochiai, K., Sugimura, T.: ElectAura-Net., Emerging Technologies. ACM Siggraph (2003)Google Scholar
  19. 19.
    Fujii, K., Ito, K., Tajima, S.: A study on the receiving signal level in relation with the location of electrodes for wearable devices using human body as a transmission channel. In: Proc. of IEEE Antennas and Propagation Society Int’l Sympo. 2003, vol. 3, pp. 1071–1074 (2003)Google Scholar
  20. 20.
    Mureika, J.R.: Donovan Bailey’s Split Time at, World Championships, Athens GRE (1997), http://myweb.lmu.edu/jmureika/track/splits/splits.html#87wc

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Masaaki Fukumoto
    • 1
  • Mitsuru Shinagawa
    • 2
  1. 1.NTT DoCoMo Multimedia LabsYokosuka-shi, Kanagawa-kenJapan
  2. 2.NTT Microsystem Integration LabsAtsugi-shi, Kanagawa-kenJapan

Personalised recommendations