Skip to main content

Mathematical Morphology and Binary Geodesy for Robot Navigation Planning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Abstract

A new method for obtaining the optimal path to robot navigation in 2-D environments is presented in this paper. To obtain the optimal path we use mathematical morphology in binary worlds and the geodesic distance. The navigation algorithm is based on the search for a path of minimum cost by using the wave-front of the geodesic distance of the mathematical morphology. The optimal path will be the one that minimize the direction changes of the robot. The algorithm of optimal path will be applied in several and complex 2-D environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zavlangas, P., Tzafestas, S.: Integration of topological and metric maps for indoor mobile robot path planning and navigation. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 121–130. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Reid, M.: Path Planning Using Optically Computed Potencial Fields. In: Proc. IEEE International Conference on Robotics and Automation, Atlanta, pp. 295–300 (1993)

    Google Scholar 

  3. Meigoli, V., Kamalodin, S., Nikravesh, Y., Talebi, H.: A new global fuzzy path planning and obstacle avoidance scheme for mobile robots. In: Proc. Advanced Robotics, Coimbra, pp. 1296–1301 (2003)

    Google Scholar 

  4. Zhuang, X., Meng, Q., Yin, B., Wang, H.: Robot path planning by artificial potential fields optimization based on reinforcement learning with fuzzy state. In: Proc. Intelligent Control and Automation, Shanghai, pp. 1166–1170 (2002)

    Google Scholar 

  5. Zou, X., Cai, Z., Sun, G.: Non-smooth environment modelling and global path planning for mobile robots. Journal of Central South University of Technology 10(3), 248–254 (2003)

    Article  Google Scholar 

  6. Hwang, J., Kim, J., Lim, S., Park, K.: A fast path planning by path graph optimization. IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans 33(1), 121–128 (2003)

    Article  Google Scholar 

  7. Serra, J.: Image Analysis and Mathematical Morphology, vol. I. Academic Press, London (1981)

    Google Scholar 

  8. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. II. Academic Press, London (1988)

    Google Scholar 

  9. Heijmans, H.: Morphological Image Operators. Academic Press, New York (1994)

    MATH  Google Scholar 

  10. Lantuéjoul, C., Beucher, S.: Geodesic distance and image analysis. Mikroskopie 37, 138–142 (1980)

    Google Scholar 

  11. Soille, P.: Morphological Image Analysis. Principles and Applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  12. Dugundji, J.: Topology. Allyn & Bacon, Boston (1966)

    MATH  Google Scholar 

  13. Diestel, R.: Graph Theory. Springer, New York (1997)

    MATH  Google Scholar 

  14. Ortiz, F.: Procesamiento Morfológico de Imágenes en Color. Aplicación a la Reconstrucción Geodésica. In: Virtual Library Miguel de Cervantes Alicante, 121-136 (2002), http://www.cervantesvirtual.com

  15. Verbeek, P., Dorst, L., Verwer, B., Groen, F.: Collision avoidance and path finding through constrained distance transformation in robot state space. In: Proc. Intelligent Autonomous Systems, Amsterdam, pp. 634–641 (1986)

    Google Scholar 

  16. Lengyel, J., Reichert, J., Donald, B., Greenberg, D.: Real-time robot motion planning using rasterizing. Computer Graphics 24(4), 327–335 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortiz, F., Puente, S., Torres, F. (2005). Mathematical Morphology and Binary Geodesy for Robot Navigation Planning. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_13

Download citation

  • DOI: https://doi.org/10.1007/11551188_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics