Skip to main content

Discovering Predictive Variables When Evolving Cognitive Models

  • Conference paper
Pattern Recognition and Data Mining (ICAPR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3686))

Included in the following conference series:

Abstract

A non-dominated sorting genetic algorithm is used to evolve models of learning from different theories for multiple tasks. Correlation analysis is performed to identify parameters which affect performance on specific tasks; these are the predictive variables. Mutation is biased so that changes to parameter values tend to preserve values within the population’s current range. Experimental results show that optimal models are evolved, and also that uncovering predictive variables is beneficial in improving the rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritter, F.E.: Towards fair comparisons of connectionist algorithms through automatically optimized parameter sets. In: Proceedings of the Annual Conference of the Cognitive Science Society, pp. 877–881. Lawrence Erlbaum, Hillsdale (1991)

    Google Scholar 

  2. Tor, K., Ritter, F.E.: Using a genetic algorithm to optimize the fit of cognitive models. In: Proceedings of the Sixth International Conference on Cognitive Modeling, pp. 308–313. Lawrence Erlbaum, Mahwah (2004)

    Google Scholar 

  3. Lane, P.C.R., Gobet, F.: Developing reproducible and comprehensible computational models. Artificial Intelligence 144, 251–263 (2003)

    Article  Google Scholar 

  4. Gobet, F., Lane, P.C.R.: A distributed framework for semi-automatically developing architectures of brain and mind. In: Proceedings of the First International Conference on e-Social Science (2005)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2, 221–248 (1994)

    Article  Google Scholar 

  7. Smith, J.D., Minda, J.P.: Thirty categorization results in search of a model. Journal of Experimental Psychology 26, 3–27 (2000)

    Google Scholar 

  8. Gobet, F., Richman, H., Staszewski, J., Simon, H.A.: Goals, representations, and strategies in a concept attainment task: The EPAM model. The Psychology of Learning and Motivation 37, 265–290 (1997)

    Article  Google Scholar 

  9. Gobet, F., Lane, P.C.R., Croker, S.J., Cheng, P.C.H., Jones, G., Oliver, I., Pine, J.M.: Chunking mechanisms in human learning. Trends in Cognitive Sciences 5, 236–243 (2001)

    Article  Google Scholar 

  10. McLeod, P., Plunkett, K., Rolls, E.T.: Introduction to Connectionist Modelling of Cognitive Processes. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Coello, C.A.C.: An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys 32 (2000)

    Google Scholar 

  12. Lane, P.C.R., Gobet, F.: Multi-task learning and transfer: The effect of algorithm representation. In: Proceedings of the ICML-2005 Workshop on Meta-Learning (2005)

    Google Scholar 

  13. Langley, P., Sanchez, J., Todorovski, L., Dzeroski, S.: Inducing process models from continuous data. In: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 347–354. Morgan Kaufmann, Sydney (2002)

    Google Scholar 

  14. Michalski, R.S.: Learning evolution model: Evolutionary processes guided by machine learning. Machine Learning 38, 9–40 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lane, P.C.R., Gobet, F. (2005). Discovering Predictive Variables When Evolving Cognitive Models. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds) Pattern Recognition and Data Mining. ICAPR 2005. Lecture Notes in Computer Science, vol 3686. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11551188_12

Download citation

  • DOI: https://doi.org/10.1007/11551188_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28757-5

  • Online ISBN: 978-3-540-28758-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics