Skip to main content

Classifying Unprompted Speech by Retraining LSTM Nets

  • Conference paper
Artificial Neural Networks: Biological Inspirations – ICANN 2005 (ICANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

Abstract

We apply Long Short-Term Memory (LSTM) recurrent neural networks to a large corpus of unprompted speech- the German part of the VERBMOBIL corpus. By training first on a fraction of the data, then retraining on another fraction, we both reduce time costs and significantly improve recognition rates. For comparison we show recognition rates of Hidden Markov Models (HMMs) on the same corpus, and provide a promising extrapolation for HMM-LSTM hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. BIOINF: Bioinformatics 15 (1999)

    Google Scholar 

  2. Chen, J., Chaudhari, N.S.: Capturing long-term dependencies for protein secondary structure prediction. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 494–500. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Chen, R., Jamieson, L.: Experiments on the impementation of recurrent neural networks for speech phone recognition. In: Proc. Thirtieth Annual Asilomar Conference on Signals, Systems and Computers, pp. 779–782 (1996)

    Google Scholar 

  4. Elenius, K., Blomberg, M.: Comparing phoneme and feature based speech recognition using artificial neural networks. In: Proc. ICSLP (1992)

    Google Scholar 

  5. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58 (1992)

    Article  Google Scholar 

  6. Gers, F.A., Schmidhuber, J.: Long Short-Term Memory learns simple context free and context sensitive languages. In: Proc. IEEE TNN (2001)

    Google Scholar 

  7. Graves, A., Eck, D., Beringer, N., Schmidhuber, J.: Biologically plausible speech recognition with LSTM neural nets. In: Proc. Bio-ADIT (2004)

    Google Scholar 

  8. Graves, A., Beringer, N., Schmidhuber, J.: Rapid retraining on speech data with lstm recurrent networks. Technical Report IDSIA-05-05, IDSIA (2005), http://www.idsia.ch/techrep.html

  9. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional lstm networks. In: International Joint Conference on Neural Networks, under review, July-August (2005); Currently under review

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. McDonough, J., Waibel, A.: Performance comparisons of all-pass transform adaption with maximum likelihood linear regression. In: Proc. ICSLP (2004)

    Google Scholar 

  12. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. 77(2), 257–286 (1989)

    Google Scholar 

  13. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45, 2673–2681 (1997)

    Article  Google Scholar 

  14. Shire, M.: Relating frame accuracy with word error in hybrid ann-hmm asr. In: Proc. EUROSPEECH (2001)

    Google Scholar 

  15. Wahlster, W.: SmartKom: Symmetric multimodality in an adaptive and reusable dialogue shell. In: Krahl, R., Günther, D. (eds.) Proceedings of the Human Computer Interaction Status Conference (2003)

    Google Scholar 

  16. Waterhouse, S., Kershaw, D., Robinson, T.: Smoothed local adaptation of connectionist systems. In: Proc. ICSLP (1996)

    Google Scholar 

  17. Weilhammer, K., Schiel, F., Reichel, U.: Multi-Tier annotations in the Verbmobil corpus. In: Proc. LREC (2002)

    Google Scholar 

  18. Young, S.: The HTK Book. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beringer, N., Graves, A., Schiel, F., Schmidhuber, J. (2005). Classifying Unprompted Speech by Retraining LSTM Nets. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_90

Download citation

  • DOI: https://doi.org/10.1007/11550822_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics