Skip to main content

Self-organizing Map Initialization

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3696)

Abstract

The solution obtained by Self-Organizing Map (SOM) strongly depends on the initial cluster centers. However, all existing SOM initialization methods do not guarantee to obtain a better minimal solution. Generally, we can group these methods in two classes: random initialization and data analysis based initialization classes. This work proposes an improvement of linear projection initialization method. This method belongs to the second initialization class. Instead of using regular rectangular grid our method combines a linear projection technique with irregular rectangular grid. By this way the distribution of results produced by the linear projection technique is considred. The experiments confirm that the proposed method gives better solutions compared to its original version.

Keywords

  • Rectangular Grid
  • Linear Projection
  • Random Initialization
  • Initialization Method
  • Irregular Grid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    CrossRef  Google Scholar 

  2. Milligan, G.W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrica 45(3), 325–341 (1980)

    CrossRef  Google Scholar 

  3. Bradley, P.S., Fayyad, U.M.: Refining initial points for K-Means clustering. In: Proc. 15th International Conf. on Machine Learning, pp. 91–99. Morgan Kaufmann, San Francisco (1998), citeseer.ist.psu.edu/bradley98refining.html

    Google Scholar 

  4. Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn. Lett. 20, 1027–1040 (1999)

    CrossRef  Google Scholar 

  5. Juan, A., Vidal, E.: Comparison of Four Initialization Techniques for the K-Medians Clustering Algorithm. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 842–852. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  6. He, J., Lan, M., Tan, C.L., Sung, S.Y., Low, H.B.: Initialization of cluster refinement algorithms: A review and comparative study. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary (2004) (to appear)

    Google Scholar 

  7. Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biom. 21, 768–769 (1965)

    Google Scholar 

  8. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  9. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining partitionings. In: Proceedings of AAAI 2002, Edmonton, Canada, pp. 93–98. AAAI, Menlo Park (2002)

    Google Scholar 

  10. Ghosh, J.: Multiclassifier systems: Back to the future. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  11. Mu-Chun Su, T.K.L., Chang, H.T.: Improving the self-organizing feature map algorithm using an efficient initialization scheme. Tamkang Journal of Science and Engineering 5, 35–48 (2002)

    Google Scholar 

  12. Ben-Hur, A., Guyon, I.: Detecting stable clusters using principal component analysis. In: Brownstein, M.J., Kohodursky, A. (eds.), Humana press, Totowa (2003)

    Google Scholar 

  13. Elemento, O.: Apport de l’analyse en composantes principales pour l’initialisation et la validation de cartes de kohonen. In: Septième journées de la Société Francophone de classification, Nancy, INRIA (1999)

    Google Scholar 

  14. Lebart, L., Morineau, A., Piron, M.: Statistique exploratoire multidimensionnelle. Dunod (1995)

    Google Scholar 

  15. Lamirel, J.C., Al Shehabi, S., Francois, C., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application to patent analysis and web mapping. Scientometrics 60, 445–462 (2004)

    CrossRef  Google Scholar 

  16. Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 307–313. Springer, Berlin (1993)

    Google Scholar 

  17. Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18, 401–409 (1969)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attik, M., Bougrain, L., Alexandre, F. (2005). Self-organizing Map Initialization. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_56

Download citation

  • DOI: https://doi.org/10.1007/11550822_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)