Abstract
The solution obtained by Self-Organizing Map (SOM) strongly depends on the initial cluster centers. However, all existing SOM initialization methods do not guarantee to obtain a better minimal solution. Generally, we can group these methods in two classes: random initialization and data analysis based initialization classes. This work proposes an improvement of linear projection initialization method. This method belongs to the second initialization class. Instead of using regular rectangular grid our method combines a linear projection technique with irregular rectangular grid. By this way the distribution of results produced by the linear projection technique is considred. The experiments confirm that the proposed method gives better solutions compared to its original version.
Keywords
- Rectangular Grid
- Linear Projection
- Random Initialization
- Initialization Method
- Irregular Grid
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
Milligan, G.W.: An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrica 45(3), 325–341 (1980)
Bradley, P.S., Fayyad, U.M.: Refining initial points for K-Means clustering. In: Proc. 15th International Conf. on Machine Learning, pp. 91–99. Morgan Kaufmann, San Francisco (1998), citeseer.ist.psu.edu/bradley98refining.html
Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn. Lett. 20, 1027–1040 (1999)
Juan, A., Vidal, E.: Comparison of Four Initialization Techniques for the K-Medians Clustering Algorithm. In: Amin, A., Pudil, P., Ferri, F., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 842–852. Springer, Heidelberg (2000)
He, J., Lan, M., Tan, C.L., Sung, S.Y., Low, H.B.: Initialization of cluster refinement algorithms: A review and comparative study. In: Proceedings of International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary (2004) (to appear)
Forgy, E.W.: Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biom. 21, 768–769 (1965)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)
Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining partitionings. In: Proceedings of AAAI 2002, Edmonton, Canada, pp. 93–98. AAAI, Menlo Park (2002)
Ghosh, J.: Multiclassifier systems: Back to the future. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002)
Mu-Chun Su, T.K.L., Chang, H.T.: Improving the self-organizing feature map algorithm using an efficient initialization scheme. Tamkang Journal of Science and Engineering 5, 35–48 (2002)
Ben-Hur, A., Guyon, I.: Detecting stable clusters using principal component analysis. In: Brownstein, M.J., Kohodursky, A. (eds.), Humana press, Totowa (2003)
Elemento, O.: Apport de l’analyse en composantes principales pour l’initialisation et la validation de cartes de kohonen. In: Septième journées de la Société Francophone de classification, Nancy, INRIA (1999)
Lebart, L., Morineau, A., Piron, M.: Statistique exploratoire multidimensionnelle. Dunod (1995)
Lamirel, J.C., Al Shehabi, S., Francois, C., Hoffmann, M.: New classification quality estimators for analysis of documentary information: application to patent analysis and web mapping. Scientometrics 60, 445–462 (2004)
Ultsch, A.: Self-organizing neural networks for visualization and classification. In: Opitz, O., Lausen, B., Klar, R. (eds.) Information and Classification, pp. 307–313. Springer, Berlin (1993)
Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers C-18, 401–409 (1969)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Attik, M., Bougrain, L., Alexandre, F. (2005). Self-organizing Map Initialization. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_56
Download citation
DOI: https://doi.org/10.1007/11550822_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28752-0
Online ISBN: 978-3-540-28754-4
eBook Packages: Computer ScienceComputer Science (R0)
