A Combined Hyperdatabase and Grid Infrastructure for Data Stream Management and Digital Library Processes

  • Manfred Wurz
  • Gert Brettlecker
  • Heiko Schuldt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3664)


Digital libraries in healthcare are hosting an inherently large and continually growing collection of digital information. Especially in medical digital libraries, this information needs to be analyzed and processed in a timely manner. Sensor data streams, for instance, providing continuous information on patients have to be processed on-line in order to detect critical situations. This is done by combining existing services and operators into streaming processes. Since the individual processing steps are quite complex, it is important to efficiently make use of the resources in a distributed system by dynamically parallelizing operators and services. The Grid vision already considers the efficient routing and distribution of service requests. In this paper, we present a novel information management infrastructure based on a hyperdatabase system that combines the process-based composition of services and operators needed for sensor data stream processing with advanced grid features.


Data Stream Digital Library Service Composition Grid Environment Composite Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, T., et al.: Business Process Execution Language for Web Services (BPEL4WS) 1.1. BEA, IBM, Microsoft, SP, Siebel (March 2003)Google Scholar
  2. 2.
    Anstreicher, K., Brixius, N., Goux, J.-P., Linderoth, J.: Solving Large Quadratic Assignment Problems on Computational Grids. Mathematical Programming 91(3), 563–588 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Apache WebServices Project. AXIS (2004),
  4. 4.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: Proc. of PODS Conf., Madison, WI, USA, pp. 1–16 (2002)Google Scholar
  5. 5.
    Brettlecker, G., Schuldt, H., Schatz, R.: Hyperdatabases for Peer–to–Peer Data Stream Management. In: Proceedings of the International Conference on Web Services (ICWS 2004), San Diego, USA, July 2004, pp. 358–367 (2004)Google Scholar
  6. 6.
    Brettlecker, G., Schuldt, H., Schek, H.-J.: Towards Reliable Data Stream Processing with OSIRIS-SE. In: Proc. of the German Database Conf. (BTW 2005), Karlsruhe, Germany (March 2005)Google Scholar
  7. 7.
    Carney, D., Centintemel, U., Cherniack, M., et al.: Monitoring Streams - A New Class of Data Management Applications. In: Proc. of VLDB Conf., Hong Kong, China, pp. 215–226 (2002)Google Scholar
  8. 8.
    Chandrasekaran, S., Cooper, O., Deshpande, A., et al.: TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In: Proc. of CIDR Conf., Asilomar, CA, USA (2003)Google Scholar
  9. 9.
    Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. In: Proc. of SIGMOD Conf., Dallas, TX, USA, pp. 379–390 (2000)Google Scholar
  10. 10.
    Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y., Zdonik, S.: Scalable Distributed Stream Processing. In: Proc. of CIDR Conf., Asilomar, CA, USA (2003)Google Scholar
  11. 11.
    Foster, I.: Automatic Generation of Self - Scheduling Programs. IEEE Transactions on Parallel and Distributed Systems 2(1), 68–78 (1991)CrossRefGoogle Scholar
  12. 12.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration (January 2002)Google Scholar
  13. 13.
    Foster, I., Kesselman, C. (eds.): The Grid 2, Blueprint for a New Computing Infrastructure. Morgan Kaufmann Publishers, San Francisco (2004)Google Scholar
  14. 14.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)Google Scholar
  15. 15.
    Gedik, B., Liu, L.: PeerCQ:A Decentralized and Self-Configuring Peer-to-Peer Information Monitoring System. In: Proc. of Distributed Computing Systems Conf., Providence, RI, USA, pp. 490–499 (2003)Google Scholar
  16. 16.
    Goux, J.-P., Kulkarni, S., Linderoth, J., Yoder, M.: An Enabling Framework for Master - Worker Applications on the Computational Grid. In: 9th IEEE Int’l. Symp. on High Performance Dist. Comp., pp. 43–50. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  17. 17.
    Haux, R., Kulikovski, C.: Digital Libraries and Medicine. Yearbook of Medical Informatics (2001)Google Scholar
  18. 18.
    Iamnitchi, A., Foster, I.: A Problem-specific Fault-tolerance Mechanism for Asynchronous Distributed Systems. In: Int’l. Conference on Parallel Processing (2000)Google Scholar
  19. 19.
    Kumar, R., Wolenetz, M., Agarwalla, B., Shin, J., Hutto, P., Paul, A., Ramachandran, U.: DFuse: A Framework for Distributed Data Fusion. In: Proc. of SensSys Conf., Los Angeles, CA, USA, pp. 114–125 (2003)Google Scholar
  20. 20.
    Leymann, F., Güntzel, K.: The Business Grid: Providing Transactional Business Processes via Grid Services. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 256–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Sabbah, D.: Bringing Grid & Web Services Together. Presentation, IBM Software Group (January 2004),
  22. 22.
    Schek, H.-J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyperdatabases. In: Proc. of WISE Conf., Hong Kong, China, pp. 28–40 (2000)Google Scholar
  23. 23.
    Schek, H.-J., Schuldt, H., Schuler, C., Weber, R.: Infrastructure for Information Spaces. In: Manolopoulos, Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 22–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Schuldt, H., Alonso, G., Beeri, C., Schek, H.-J.: Atomicity and Isolation for Transactional Processes. ACM Transactions on Database Systems 27(1), 63–116 (2002)CrossRefGoogle Scholar
  25. 25.
    Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Peer-to-Peer Process Execution with OSIRIS. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 483–498. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Shah, M., Hellerstein, J., Chandrasekaran, S., Franklin, M.: Flux: An Adaptive Partitioning Operator for Continuous Query Systems. In: Proc. of ICDE Conf., Bangalore, India (2003)Google Scholar
  27. 27.
    Shao, G.: Adaptive Scheduling of Master/Worker Applications on Distributed Computational Resources. PhD thesis, University of California - San Diego (2001)Google Scholar
  28. 28.
    The Globus Alliance. The Globus Toolkit Version 3 (2003),
  29. 29.
    van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient Load Balancing for Wide - Area Divide - And - Conquer Applications. In: 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 34–43 (2001)Google Scholar
  30. 30.
    VivoMetrics. VivoMetrics – Continuous Ambulatory Monitoring (2003),
  31. 31.
    Weber, R., Schuler, C., Neukomm, P., Schuldt, H., Schek, H.-J.: Web Service Composition with O’Grape and OSIRIS. In: Proc. of VLDB Conf., Berlin, Germany (2003)Google Scholar
  32. 32.
    Wurz, M., Schuldt, H.: Dynamic Parallelization of Grid–Enabled Web Services. In: Sloot, P.M.A., Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 173–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Yao, Y., Gehrke, J.: Query Processing for Sensor Networks. In: Proc. of CIDR Conf., Asilomar, CA, USA (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Manfred Wurz
    • 1
  • Gert Brettlecker
    • 1
  • Heiko Schuldt
    • 1
  1. 1.University for Health Sciences, Medical Informatics and TechnologyHall in TyrolAustria

Personalised recommendations