Query Trading in Digital Libraries

  • Fragkiskos Pentaris
  • Yannis Ioannidis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3664)


In this paper we present a distributed query framework suitable for use in federations of digital libraries (DL). Inspired by e-commerce technology, we recognize CPU-processing and queries (and query answers) as commodities and model the task of query optimization and execution as a task of trading CPU-processing, queries and query-answers. We show that our framework satisfies the needs of modern DL federations by respecting the autonomy of DL nodes and natively supporting their business model. Our query processing conception is independent of the possible distributed architecture and can be easily implemented over a typical GRID architectural infrastructure or a Peer-To-Peer network.


Digital Library Query Processing Directory Service Distribute Hash Table Execution Plan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bichler, M., Kaukal, M., Segev, A.: Multi-attribute auctions for electronic procurement. In: Proc. of the 1st IBM IAC Workshop on Internet Based Negotiation Technologies, Yorktown Heights, NY, March 18-19 (1999)Google Scholar
  2. 2.
    BRICKS integrated project (2004),
  3. 3.
    Collins, J., Tsvetovat, M., Sundareswara, R., van Tonder, J., Gini, M.L., Mobasher, B.: Evaluating risk: Flexibility and feasibility in multi-agent contracting. In: Proc. of the 3rd Annual Conf. on Autonomous Agents, Seattle, WA, USA (May 1999)Google Scholar
  4. 4.
    Conitzer, V., Sandholm, T.: Complexity results about nash equilibria. Technical report CMU-CS-02-135 (2002),
  5. 5.
    Deshpande, A., Hellerstein, J.M.: Decoupled query optimization for federated database systems. In: Proc. of 18th ICDE, San Jose, CA, pp. 716–727 (2002)Google Scholar
  6. 6.
    Ferguson, D., Nicolaou, C., Yemini, Y.: An economy for managing replicated data in autonomous decentralized systems. In: Proc. of Int. Symposium on Autonomous and Decentralized Systems (1993)Google Scholar
  7. 7.
    Gravelle, H., Rees, R.: Microeconomics, 3rd edn. Pearson Education, England (2004)Google Scholar
  8. 8.
    Diligent integrated project,
  9. 9.
    Ioannidis, Y.E., Kang, Y.C.: Randomized algorithms for optimizing large join queries. In: Garcia-Molina, H., Jagadish, H.V. (eds.) Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, May 23-25, pp. 312–321. ACM Press, New York (1990)CrossRefGoogle Scholar
  10. 10.
    Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric query optimization. VLDB Journal 6(2), 132–151 (1997)CrossRefGoogle Scholar
  11. 11.
    Kagel, J.H.: Auctions: A Survey of Experimental Research. In: Kagel, J.E., Roth, A.E. (eds.) The Handbook of Experimental Economics. Princeton University Press, Princeton (1995)Google Scholar
  12. 12.
    Kossmann, D.: The state of the art in distributed query processing. ACM Computing Surveys (September 2000)Google Scholar
  13. 13.
    Kraus, S.: Strategic Negotiation in Multiagent Environments (Intelligent Robotics and Autonomous Agents). The MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press, Oxford (1995)Google Scholar
  15. 15.
    Ogston, E., Vassiliadis, S.: A Peer-to-Peer Agent Auction. In: Proc. of AAMAS 2002, Bologna, Italy, July 15–19 (2002)Google Scholar
  16. 16.
    Papadimitriou, C.H., Yannakakis, M.: Multiobjective query optimization. In: Proc. of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on PODS, Santa Barbara, CA, USA, May 21-23. ACM, New York (2001)Google Scholar
  17. 17.
    Van Dyke Parunak, H.: Manufacturing experience with the contract net. In: Huhns, M.N. (ed.) Distributed Artificial Intelligence, ch. 10, Pitman. Research Notes in Artificial Intelligence (1987)Google Scholar
  18. 18.
    Pentaris, F., Ioannidis, Y.: Distributed query optimization by query trading. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 532–550. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Pentaris, F., Ioannidis, Y.: Query optimization in autonomous distributed database systems (2004) (submitted)Google Scholar
  20. 20.
    Pingle, M., Tesfatsion, L.: Overlapping generations, intermediation, and the first welfare theorem. Journal of Economic Behavior and Organization 3(5), 325–345 (1991)CrossRefGoogle Scholar
  21. 21.
    Rosenchein, J.S., Zlotkin, G.: Rules of Encounter: designing conventions for automated negotiation among computers. The MIT Press series in artificial intelligence (1994)Google Scholar
  22. 22.
    Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence 135, 1–54 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Smith, R.G.: The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers 29(12), 1104–1113 (1980)CrossRefGoogle Scholar
  24. 24.
    Stonebraker, M., Aoki, P.M., Litwin, W., Pfeller, A., Sah, A., Sidell, J., Staelin, C., Yu, A.: Mariposa: A wide-area distributed database system. VLDB Journal 5(1), 48–63 (1996)CrossRefGoogle Scholar
  25. 25.
    Su, S.Y.W., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., Liu, Y., Pluempitiwiriyawej, C., Lee, M., Lam, H.: An internet-based negotiation server for e-commerce. VLDB Journal 10, 72–90 (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fragkiskos Pentaris
    • 1
  • Yannis Ioannidis
    • 1
  1. 1.Department of Informatics and TelecommunicationsUniversity of Athens, PanepistimiopolisAthensGreece

Personalised recommendations