Skip to main content

On the Number of Random Digits Required in MonteCarlo Integration of Definable Functions

  • Conference paper
Mathematical Foundations of Computer Science 2005 (MFCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3618))

Abstract

Semi-algebraic objects are subsets or functions that can be described by finite boolean combinations of polynomials with real coefficients. In this paper we provide sharp estimates for the the precision and the number of trials needed in the MonteCarlo integration method to achieve a given error with a fixed confidence when approximating the mean value of semi-algebraic functions. Our study extends to the functional case the results of P. Koiran ([7]) for approximating the volume of semi-algebraic sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castro, D., Montaña, J.L., Pardo, L.M., San Martin, J.: The Distribution of Condition Numbers of Rational Data of Bounded Bit Length. Found. of Comput. Math. 1(1), 1–52 (2002)

    Google Scholar 

  2. Castro, D., Pardo, L.M., San Martín, J.: Systems of rational polynomial equations have polynomial size approximate zeros on the average. J. Complexity 19(2), 161–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cucker, F., Smale, S.: On the Mathematical foundations of learning. Bulletin (New Series) Of the AMS 39(1), 1–4 (2001)

    Article  MathSciNet  Google Scholar 

  4. Davenport, H.: On a Principle of Lipschitz. J. London Math. Soc. 26, 179–183 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  5. Erdos, P., Turan, P.: On a Problem in the Theory of Uniform Distribution. I, Indagationes Math. 10, 370–378, 57 (1948)

    Google Scholar 

  6. Erdos, P., Turan, P.: On a Problem in the Theory of Uniform Distribution. II, Indagationes Math. 10, 406–413 (1948)

    Google Scholar 

  7. Koiran, P.: Approximating the volume of definable sets. In: Proc. 36th IEEE Symposyum on Foundations of Computer Science FOCS 1995, pp. 134–141 (1995)

    Google Scholar 

  8. Milnor, J.: On the Betti Numbers of Real Varieties. Proc. Amer. Math. Soc. 15, 275–280 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  9. Montaña, J.L., Pardo, L.M.: Lower bounds for Arithmetic Networks. Applicable Algebra in Engineering Communications and Computing 4, 1–24 (1993)

    Article  MATH  Google Scholar 

  10. Mordell, L.J.: On some Arithmetical Results in the Geometry of Numbers. Compositio Mathematica 1, 248–253 (1934)

    MATH  MathSciNet  Google Scholar 

  11. Oleinik, O.A.: Estimates of the Betti Numbers of Real Algebraic Hypersurfaces. Mat. Sbornik 70, 635–640 (1951)

    MathSciNet  Google Scholar 

  12. Oleinik, O.A., Petrovsky, I.B.: On the topology of Real Algebraic Surfaces. Izv. Akad. Nauk SSSR (in Trans. of the Amer. Math. Soc.) 1, 399–417 (1962)

    Google Scholar 

  13. Pardo, L.M.: How Lower and Upper Complexity Bounds Meet in Elimination Theory. In: Cohen, G., Giusti, M., Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 33–69. Springer, Heidelberg (1995)

    Google Scholar 

  14. Pollard, P.: Convergence of Stocastic Processes. Springer, Heidelberg (1984)

    Google Scholar 

  15. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, RAND Corporation, Santa Monica, Calif. (1948)

    Google Scholar 

  16. Thom, R.: Sur l’Homologie des Varietes Alg’ebriques Réeelles. In: Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 255–265. Princeton Univ. Press, Princeton (1965)

    Google Scholar 

  17. Valiant, L.G.: A theory of the learneable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  18. Vapnik, V.: Statistical learning theory. John Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  19. Warren, H.E.: Lower Bounds for Approximation by non Linear Manifolds. Trans. A.M.S. 133, 167–178 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weinzierl, S.: Introduction to MonteCarlo methods. Technical Report NIKHEF-00-012 Theory Group (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alonso, C.L., Montaña, J.L., Pardo, L.M. (2005). On the Number of Random Digits Required in MonteCarlo Integration of Definable Functions. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_9

Download citation

  • DOI: https://doi.org/10.1007/11549345_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics