Skip to main content

Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3618)

Abstract

In this paper we propose a probabilistic analysis of the fully asynchronous behavior (i.e., two cells are never simultaneously updated, as in a continuous time process) of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1). It has been experimentally shown in previous works that introducing asynchronism in the global function of a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work exist on the subject. The cellular automata we consider live on a ring of size n and asynchronism is introduced as follows: at each time step one cell is selected uniformly at random and the transition rule is applied to this cell while the others remain unchanged. Among the sixty-four cellular automata belonging to the class we consider, we show that fifty-five other converge almost surely to a random fixed point while nine of them diverge on all non-trivial configurations. We show that the convergence time of these fifty-five automata can only take the following values: either 0, Θ(n ln n), Θ(n 2), Θ(n 3), or Θ(n2n). Furthermore, the global behavior of each of these cellular automata can be guessed by simply reading its code.

Keywords

  • Random Walk
  • Cellular Automaton
  • Convergence Time
  • Probabilistic Cellular Automaton
  • Synchronous Dynamic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bersini, H., Detours, V.: Asynchrony induces stability in cellular automata based models. In: Brooks, Maes, Pattie (eds.) Proceedings of the 4th International Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV, July 1994, pp. 382–387. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Brémaud, P.: Markov chains, Gibbs fileds, Monte Carlo simulation, and queues. Springer, Heidelberg (1999)

    Google Scholar 

  3. Buvel, R.L., Ingerson, T.E.: Structure in asynchronous cellular automata. Physica D 1, 59–68 (1984)

    MathSciNet  Google Scholar 

  4. Fatés, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. arxiv:nlin.CG/0402016 (2004) (Submitted)

    Google Scholar 

  5. Fatès, N., Morvan, M.: Perturbing the topology of the game of life increases its robustness to asynchrony. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 111–120. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  6. Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Research report LIP RR2005-04, ENS Lyon (2005)

    Google Scholar 

  7. Grimmet, G., Stirzaker, D.: Probability and Random Process, 3rd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  8. Gács, P.: Deterministic computations whose history is independent of the order of asynchronous updating (2003), http://arXiv.org/abs/cs/0101026

  9. Huberman, B.A., Glance, N.: Evolutionary games and computer simulations. In: Proceedings of the National Academy of Sciences, USA, August 1993, vol. 90, pp. 7716–7718 (1993)

    Google Scholar 

  10. Louis, P.-Y.: Automates Cellulaires Probabilistes: mesures stationnaires, mesures de Gibbs associées et ergodicité. PhD thesis, Université de Lille I (September 2002)

    Google Scholar 

  11. Mattera, M.: Annihilating random walks and perfect matchings of planar graphs. In: Discrete Mathematics and Theoretical Computer Science, AC, pp. 173–180 (2003)

    Google Scholar 

  12. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature (London) 359, 826–829 (1992)

    CrossRef  Google Scholar 

  13. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. BioSystems 51, 123–143 (1999)

    CrossRef  Google Scholar 

  14. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fatés, N., Morvan, M., Schabanel, N., Thierry, É. (2005). Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata. In: Jȩdrzejowicz, J., Szepietowski, A. (eds) Mathematical Foundations of Computer Science 2005. MFCS 2005. Lecture Notes in Computer Science, vol 3618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11549345_28

Download citation

  • DOI: https://doi.org/10.1007/11549345_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28702-5

  • Online ISBN: 978-3-540-31867-5

  • eBook Packages: Computer ScienceComputer Science (R0)