Skip to main content

A Grid Computing-Based Monte Carlo Docking Simulations Approach for Computational Chiral Discrimination

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3642))

Abstract

A validity of Grid computing with Monte Carlo (MC) docking simulations was examined in order to execute prediction and data handling for the computational chiral discrimination. Docking simulations were performed with various computational parameters for the chiral discrimination of a series of 17 enantiomers by β-cyclodextrin (β-CD) or by 6-amino-6-deoxy-β-cyclodextrin (am-β-CD). Rigid-body MC docking simulations gave more accurate predictions than flexible docking simulations. The accuracy was also affected by both the simulation temperature and the kind of force field. The prediction rate of chiral preference was improved by as much as 76.7% when rigid-body MC docking simulations were performed at low temperatures (100 K) with a sugar22 parameter set in the CHARMM force field. Our approach for Grid-based MC docking simulations suggested the conformational rigidity of both the host and guest molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cabusas, M.E.: Chiral Separations on HPLC Derivatized Polysaccharide CSPs: Ph. D. Thesis, Virginia Polytechnic Institute and State University, USA, 1-9 (1998)

    Google Scholar 

  2. Lee, S., Yi, D.H., Jung, S.: NMR Spectroscopic Analysis on the Chiral Recognition of Noradrenaline by ěâ-Cyclodextrin and Carboxymethyl- ěâ-cyclodextrin. Bull. Korean Chem. Soc. 25, 216–220 (2004)

    Article  Google Scholar 

  3. Choi, Y.H., Yang, C.H., Kim, H.W., Jung, S.: Monte Carlo simulations of the chiral recognition of fenoprofen enantiomers by cyclomaltoheptaose. Carbohydr. Res. 328, 393–397 (2000)

    Article  Google Scholar 

  4. Bouzida, D., Rejto, P.A., Verkhivker, G.M.: Monte Carlo Simulations of Ligand-Protein Binding Energy Landscapes with the Weighted Histogram Analysis Method. Int. J. Quant. Chem. 73, 113–121 (1999)

    Article  Google Scholar 

  5. Rekharsky, M.V., Inoue, Y.J.: Complexation and Chiral Recognition Thermodynamics of 6-Amino-6-Deoxy-Beta-Cyclodextrin with Aanionic, Cationic, and Neutral Chiral Guests: Counterbalance between van der Waals and Coulombic Interactions. J. Am. Chem. Soc. 124, 813–826 (2002)

    Article  Google Scholar 

  6. Lipkowitz, K.B., Coner, R., Peterson, M.A.: Locating Regions of Maximum Chiral Discrimination: A Computational Study of Enantioselection on a Popular Chiral Stationary Phase Used in Chromatography. J. Am. Chem. Soc. 119, 11269–11276 (1997)

    Article  Google Scholar 

  7. Dodziuk, H., Lukin, O.: The Dependence of the Average Energy Difference for the Diastereomeric Complexes of α-Pinene Enantiomers with α-Cyclodextrin on the Length of Dynamic Simulations. Chem. Phys. Lett. 327, 18–22 (2000)

    Article  Google Scholar 

  8. Wolbach, J.P., Lloyd, D.K., Wainer, I.W.: Approaches to Quantitative Structure Enantio-selectivity Relationships Modeling of Chiral Separations Using Capillary Electrophoresis. J. Chromatogr. A. 914, 299–314 (2001)

    Article  Google Scholar 

  9. Booth, T.D., Azzaoui, K., Wainer, I.W.: Prediction of Chiral Chromatography Separations by Combined Multivariate Regression Neural Networks. Anal. Chem. 69, 3879–3883 (1997)

    Article  Google Scholar 

  10. Natrajan, A., Crowley, M., Wilkins-Diehr, N., Humphrey, M.A., Fox, A.D., Grimshaw, A.S., Brooks III, C.L.: Studying Protein Folding on the Grid: Experiences Using CHARMM on NPACI Resources under Legion. Concurr. Computat. Pract. Exper. 16, 385–397 (2004)

    Article  Google Scholar 

  11. Jeong, K., Kim, D., Kim, M., Hwang, S., Jung, S., Lim, Y., Lee, S.: A Workflow Management and Grid Computing Approach to Molecular Simulation-Based Bio/Nano Experiments. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2660, pp. 1117–1126. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculation by Fast Computing Machines. J. Chem. Phys. 21, 1087–1092 (1953); Solvation Correction. Comput. Chem. 18, 723–743 (1997)

    Google Scholar 

  13. Srinivasan, J., Cheatham, T.E., Cieplak, P., Kollman, P.A., Case, D.A.: Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate-DNA Helices. J. Am. Chem. Soc. 120, 9401–9409 (1998)

    Article  Google Scholar 

  14. Sitkoff, D., Sharp, K.A., Honig, B.: Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models. J. Phys. Chem. 98, 1978–1988 (1994); Growth Hormone-Receptor Complex. J. Comput. Chem. 23, 15–27 (2002)

    Google Scholar 

  15. Choi, Y., Jung, S.: Molecular Dynamics Simulations for the Prediction of Chiral Discrimination of N-acetylphenylalanine Enantiomers by Cyclomaltoheptaose Based on the MM-PBSA Approach. Carbohydr. Res. 339, 1961–1966 (2004)

    Article  Google Scholar 

  16. Bea, I., Jaime, C., Kollman, P.A.: Molecular Recognition by β-Cyclodextrin Derivatives: FEP vs MM/PBSA Goals and Problems. Theor. Chem. Acc. 108, 286–292 (2002)

    Article  Google Scholar 

  17. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of Docking: An Overview of Search Algorithms and a Guide to Scoring Functions. Proteins 47, 409–443 (2002)

    Article  Google Scholar 

  18. Ahn, S., Ramirez, J., Grigorean, G., Lebrilla, C.B.: Chiral Recognition in Gas phase Cyclodextrin: Amino Acid Complexes. J. Am. Soc. Mass Spec. 12, 278–287 (2001)

    Article  Google Scholar 

  19. Mbamala, E.C., Pastore, G.: Optimal Monte Carlo Sampling for Simulation of Classical Fluids. Phys. A. 313, 312–320 (2002)

    Article  MATH  Google Scholar 

  20. Bouzida, D., Kumar, S., Swendsen, R.H.: Efficient Monte Carlo Methods for the Computer Simulation of Biological Molecules. Phys. Rev. A. 45, 8894–8901 (1992)

    Article  Google Scholar 

  21. Allen, M.P., Tildesley, D.J.: Computer Simulations of Liquids. Oxford University Press, New York (1987)

    Google Scholar 

  22. Kuttel, M., Brady, J.W., Naidoo, K.J.: Carbohydrate Solution Simulations: Producing a Force Field with Experimentally Consistent Primary Alcohol Rotational Frequencies and Populations. J. Comput. Chem. 23, 1236–1243 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Choi, Y., Kim, SR., Hwang, S., Jeong, K. (2005). A Grid Computing-Based Monte Carlo Docking Simulations Approach for Computational Chiral Discrimination. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_47

Download citation

  • DOI: https://doi.org/10.1007/11548706_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics