Skip to main content

A Hierarchical Approach to Multimodal Classification

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3642)

Abstract

Data models that are induced in classifier construction often consists of multiple parts, each of which explains part of the data. Classification methods for such models are called the multimodal classification methods. The model parts may overlap or have insufficient coverage. How to deal best with the problems of overlapping and insufficient coverage? In this paper we propose hierarchical or layered approach to this problem. Rather than seeking a single model, we consider a series of models under gradually relaxing conditions, which form a hierarchical structure. To demonstrate the effectiveness of this approach we implemented it in two classifiers that construct multi-part models: one based on the so-called lattice machine and the other one based on rough set rule induction. This leads to hierarchical versions of the classifiers. The classification performance of these two hierarchical classifiers is compared with C4.5, Support Vector Machine (SVM), rule based classifiers (with the optimisation of rule shortening) implemented in Rough Set Exploration System (RSES), and a method combining k-nn with rough set rule induction (RIONA in RSES). The results of the experiments show that this hierarchical approach leads to improved multimodal classifiers.

Keywords

  • Hierarchical classification
  • multimodal classifier
  • lattice machine
  • rough sets
  • rule induction
  • k-NN

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11548706_13
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31824-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bazan, J.G., Szczuka, M., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  2. Bazan, J., Szczuka, M., Wojna, A., Wojnarski, M.: On the evolution of Rough Set Exploration System. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  3. Bazan, J., Hoa Nguyen, S., Son Nguyen, H., Skowron, A.: Rough set methods in approximation of hierarchical concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 346–355. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Bazan, J.: Classifiers based on two-layered learning. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 356–361. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  5. Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS (LNAI), vol. 2766. Springer, Heidelberg (2003)

    MATH  CrossRef  Google Scholar 

  6. Dietterich, T.G.: Ensemble Learning. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 405–408. The MIT Press, Cambridge (2002)

    Google Scholar 

  7. Góra, G., Wojna, A.G.: RIONA: a new classification system combining rule induction and instance-based learning. Fundamenta Informaticae 51(4), 369–390 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Hoa Nguyen, S., Bazan, J., Skowron, A., Son Nguyen, H.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  9. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  10. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cyber. 6, 325–327 (1976)

    CrossRef  Google Scholar 

  11. Fix, E., Hodges, J.L.: Discriminatory analysis, nonparametric discrimination: Consistency properties. Technical Report TR4, USAF School of Aviation Medicine, Randolph Field, TX (1951)

    Google Scholar 

  12. Poggio, T., Smale, S.: The Mathematics of Learning: Dealing with Data. Notices of the AMS 50(5), 537–544 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Quinlan, R.: Rulequest research data mining tools, http://www.rulequest.com/

  14. Snedecor, G.W., Cochran, W.G.: Statisitical Methods, 8th edn. Lowa State University Press, Ames (2002)

    Google Scholar 

  15. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communication of ACM 29, 1213–1229 (1986)

    CrossRef  Google Scholar 

  16. Stone, P.: Layered Learning in Multi-agent Systems: A Winning Approach to Robotic Soccer. MIT Press, Cambridge (2000)

    Google Scholar 

  17. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)

    MATH  Google Scholar 

  18. Wang, H., Dubitzky, W., Düntsch, I., Bell, D.: A lattice machine approach to automated casebase design: Marrying lazy and eager learning. In: Proc. IJCAI 1999, Stockholm, Sweden, pp. 254–259 (1999)

    Google Scholar 

  19. Wang, H., Düntsch, I., Bell, D.: Data reduction based on hyper relations. In: Proceedings of KDD 1998, New York, pp. 349–353 (1998)

    Google Scholar 

  20. Wang, H., Düntsch, I., Gediga, G.: Classificatory filtering in decision systems. International Journal of Approximate Reasoning 23, 111–136 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  21. Wang, H., Düntsch, I., Gediga, G., Skowron, A.: Hyperrelations in version space. International Journal of Approximate Reasoning 36(3), 223–241 (2004)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  23. RSES: Rough set exploration system. Institute of Mathematics, Warsaw University, Poland, http://logic.mimuw.edu.pl/~rses

  24. Quinlan, R.: Improved Use of Continuous Attributes in C4.5. Journal of Artificial Intelligence Research 4, 77–90 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skowron, A., Wang, H., Wojna, A., Bazan, J. (2005). A Hierarchical Approach to Multimodal Classification. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. RSFDGrC 2005. Lecture Notes in Computer Science(), vol 3642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548706_13

Download citation

  • DOI: https://doi.org/10.1007/11548706_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28660-8

  • Online ISBN: 978-3-540-31824-8

  • eBook Packages: Computer ScienceComputer Science (R0)