Advertisement

Look: Simple Stochastic Relations Are Just, Well, Simple

  • Ernst-Erich Doberkat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

Simple systems cannot decomposed further. Algebraically, simple systems have only isomorphisms as epis. We characterize simple stochastic relations through different forms of bisimulations for the case that the underlying spaces are Polish, and analytic, respectively. This requires a closer investigation of bisimulations, congruences and their mutual relationship. We provide a complete characterization of simple stochastic relations for analytic spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baier, C., Haverkort, B., Hermanns, H., Koert, J.-P.: Model-checking algorithms for continuous time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
  2. 2.
    Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation of labelled Markov-processes. Information and Computation 179(2), 163–193 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Doberkat, E.-E.: Semi-pullbacks and bisimulations in categories of stochastic relations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 996–1007. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Doberkat, E.-E.: Factoring stochastic relations. Information Processing Letters 90(4), 161–166 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Doberkat, E.-E.: Look: simple stochastic relations are just, well, simple. Technical Report 152, Chair for Software Technology, University of Dortmund (November 2004)Google Scholar
  6. 6.
    Doberkat, E.-E.: Semi-pullbacks for stochastic relations over analytic spaces. Math. Struct. Comp. Sci (2005) (in print) Google Scholar
  7. 7.
    Doberkat, E.-E.: Zeno paths, congruences and bisimulations for continuous-time stochastic logic. Technical Report 155, Chair for Software Technology, University of Dortmund (March 2005)Google Scholar
  8. 8.
    Lang, S.: Algebra. Addison-Wesley, Reading (1965)zbMATHGoogle Scholar
  9. 9.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249(1), 3–80 (2000); Special issue on modern algebra and its applications Google Scholar
  10. 10.
    Rutten, J.J.M.M.: Bisimulation in enumerative combinatorics. ENTCS 65(1), 1–19 (2002)Google Scholar
  11. 11.
    Rutten, J.J.M.M.: Behavioral differential equations: a coinductive calculus of streams, automata and power series. Theor. Comp. Sci. 308, 1–53 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Srivastava, S.M.: A Course on Borel Sets. Graduate Texts in Mathematics. Springer, Berlin (1998)zbMATHGoogle Scholar
  13. 13.
    Wagner, D.H.: A survey of measurable selection theorems. SIAM J. Control Optim. 15(5), 859–903 (1977)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ernst-Erich Doberkat
    • 1
  1. 1.Chair for Software TechnologyUniversity of Dortmund 

Personalised recommendations