Advertisement

Complete Axioms for Stateless Connectors

  • Roberto Bruni
  • Ivan Lanese
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

The conceptual separation between computation and coordination in distributed computing systems motivates the use of peculiar entities commonly called connectors, whose task is managing the interaction among distributed components. Different kinds of connectors exist in the literature, at different levels of abstraction. We focus on a basic algebra of connectors which is expressive enough to model, e.g., all the architectural connectors of CommUnity. We first define the operational, observational and denotational semantics of connectors, then we show that the observational and denotational semantics coincide and finally we give a complete normal-form axiomatization.

Keywords

Normal Form Hide Variable Mutual Exclusion Monoidal Category Tile System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J.A., Middelburg, C.A., Stefanescu, G.: Network algebra for asynchronous dataflow. International Journal of Computer Mathematics 65, 57–88 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bruni, R., Fiadeiro, J.L., Lanese, I., Lopes, A., Montanari, U.: New insights on architectural connectors. In: Proc. IFIP TCS 2004, pp. 367–379. Kluwer Academics, Dordrecht (2004)Google Scholar
  3. 3.
    Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theoret. Comput. Sci. 286(2), 247–292 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruni, R., Lanese, I., Montanari, U.: Normal forms for stateless connectors. Tech. Rep. TR-05-11, Computer Science Department, University of Pisa, ItalyGoogle Scholar
  5. 5.
    Cazanescu, V.E., Stefanescu, G.: Towards a new algebraic foundation of flowchart scheme theory. Fundamenta Informaticae 13, 171–210 (1990)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-monoidal categories. Applied Categorical Structures 7, 299–331 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Degano, P., Montanari, U.: A model for distributed systems based on graph rewriting. Journal of the ACM 34(2), 411–449 (1987)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph grammars: an algebraic approach. In: Proc. IEEE Conference on Automata and Switching Theory, pp. 167–180 (1973)Google Scholar
  10. 10.
    Fiadeiro, J.L.: Categories for Software Engineering. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Fiadeiro, J.L., Lopes, A., Wermelinger, M.: A mathematical semantics for architectural connectors. In: Backhouse, R., Gibbons, J. (eds.) Generic Programming. LNCS, vol. 2793, pp. 178–221. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  13. 13.
    Goguen, J.A.: Categorical foundations for general systems theory. In: Advances in Cybernetics and Systems Research. Transcripta Books, pp. 121–130 (1973)Google Scholar
  14. 14.
    Hoare, C.A.R.: CSP – Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1985)Google Scholar
  15. 15.
    Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of Processes. Journal of Pure and Applied Algebra 115, 141–178 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lafont, Y.: Interaction combinators. Inform. and Comput. 137(1), 69–101 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 526–539. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  18. 18.
    MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)Google Scholar
  19. 19.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96, 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  21. 21.
    Milner, R.: Turing, computation and communication. Turing anniversary lecture (1997)Google Scholar
  22. 22.
    Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Aarhus University (1981)Google Scholar
  24. 24.
    Rensink, A.: Bisimilarity of open terms. Inform. and Comput. 156(1/2), 345–385 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Stefanescu, G.: Network Algebra. Discrete Math. and Theoret. Comp. Sci. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Ivan Lanese
    • 1
  • Ugo Montanari
    • 1
  1. 1.Computer Science DepartmentUniversity of PisaItaly

Personalised recommendations