Bisimilarity Is Not Finitely Based over BPA with Interrupt

  • Luca Aceto
  • Wan Fokkink
  • Anna Ingolfsdottir
  • Sumit Nain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)


This paper shows that bisimulation equivalence does not afford a finite equational axiomatization over the language obtained by enriching Bergstra and Klop’s Basic Process Algebra with the interrupt operator. Moreover, it is shown that the collection of closed equations over this language is also not finitely based. In sharp contrast to these results, the collection of closed equations over the language BPA enriched with the disrupt operator is proven to be finitely based.


Axiom System Parallel Composition Label Transition System Process Algebra Closed Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Ésik, Z., Ingolfsdottir, A.: On the two-variable fragment of the equational theory of the max-sum algebra of the natural numbers. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 267–278. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Aceto, L., Ésik, Z., Ingolfsdottir, A.: The max-plus algebra of the natural numbers has no finite equational basis. Theoretical Comput. Sci. 293, 169–188 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Aceto, L., Fokkink, W., van Glabbeek, R., Ingolfsdottir, A.: Nested semantics over finite trees are equationally hard. Information and Computation 191, 203–232 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Aceto, L., Fokkink, W., Ingolfsdottir, A.: A menagerie of non-finitely based process semantics over BPA*—from ready simulation to completed traces. Mathematical Structures in Computer Science 8, 193–230 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: CCS with Hennessy’s merge has no finite equational axiomatization. Theoretical Comput. Sci. 330, 377–405 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Nain, S.: Bisimilarity is not Finitely Based over BPA with Interrupt, Research report RS-04-24, BRICS (October 2004), Available from
  7. 7.
    Baeten, J.C., Bergstra, J.: Mode transfer in process algebra, Report CSR 00–01, Technische Universiteit Eindhoven (2000), This paper is an expanded and revised version of [11]Google Scholar
  8. 8.
    Baeten, J.C., Bergstra, J., Klop, J.W.: Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae IX, 127–168 (1986)MathSciNetGoogle Scholar
  9. 9.
    Baeten, J.C., Bergstra, J., Klop, J.W.: Decidability of bisimulation equivalence for processes generating context-free languages. J Assoc. Comput. Mach. 40, 653–682 (1993)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Baeten, J.C., Verhoef, C.: A congruence theorem for structured operational semantics. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 477–492. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Bergstra, J.: A mode transfer operator in process algebra, Report P8808, Programming Research Group, University of Amsterdam (1988)Google Scholar
  12. 12.
    Bergstra, J., Klop, J.W.: Fixed point semantics in process algebras. Report IW 206, Mathematisch Centrum, Amsterdam (1982)Google Scholar
  13. 13.
    Bergstra, J., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60, 109–137 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Blom, S., Fokkink, W., Nain, S.: On the axiomatizability of ready traces, ready simulation and failure traces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 109–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Brinksma, E.: A tutorial on LOTOS. In: Diaz, M. (ed.) Proceedings of the IFIP Workshop on Protocol Specification, Testing and Verification, pp. 73–84. North-Holland, Amsterdam (1986)Google Scholar
  16. 16.
    Conway, J.H.: Regular Algebra and Finite Machines. In: Brown, R., De Wet, J. (eds.) Mathematics Series. Chapman and Hall, London (1971)Google Scholar
  17. 17.
    Dsouza, A., Bloom, B.: On the expressive power of CCS. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 309–323. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Fokkink, W., Luttik, B.: An omega-complete equational specification of interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Fokkink, W., Nain, S.: On finite alphabets and infinite bases: From ready pairs to possible worlds. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 182–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Gischer, J.L.: The equational theory of pomsets. Theoretical Comput. Sci. 61, 199–224 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Groote, J.F.: A new strategy for proving ω–completeness with applications in process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Hennessy, M.: Axiomatising finite concurrent processes. SIAM J. Comput. 17, 997–1017 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    ISO, Information processing systems – open systems interconnection – LOTOS – a formal description technique based on the temporal ordering of observational behaviour ISO/TC97/SC21/N DIS8807 (1987)Google Scholar
  24. 24.
    Mauw, S.: PSF – A Process Specification Formalism. PhD thesis, University of Amsterdam (December 1991)Google Scholar
  25. 25.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. 26.
    Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML. MIT Press, Cambridge (1997) (Revised)Google Scholar
  27. 27.
    Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  28. 28.
    Moller, F.: The nonexistence of finite axiomatisations for CCS congruences. In: Proceedings 5th Annual Symposium on Logic in Computer Science, Philadelphia, USA, pp. 142–153. IEEE Computer Society Press, Los Alamitos (1990)CrossRefGoogle Scholar
  29. 29.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  30. 30.
    Redko, V.: On defining relations for the algebra of regular events. Ukrainskii Matematicheskii Zhurnal 16, 120–126 (1964) (In Russian)Google Scholar
  31. 31.
    Sewell, P.: Nonaxiomatisability of equivalences over finite state processes. Annals of Pure and Applied Logic 90, 163–191 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luca Aceto
    • 1
    • 3
  • Wan Fokkink
    • 4
  • Anna Ingolfsdottir
    • 1
    • 2
  • Sumit Nain
    • 1
  1. 1.Brics (Basic Research in Computer Science), Centre of the Danish National Research Foundation, Department of Computer ScienceAalborg UniversityAalborg ØDenmark
  2. 2.Department of Computer ScienceUniversity of IcelandReykjavíkIceland
  3. 3.School of Computer ScienceReykjavík UniversityReykjavíkIceland
  4. 4.Department of Computer Science, Section Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations