Advertisement

Bireachability and Final Multialgebras

  • Michał Walicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

Multialgebras generalise algebraic semantics to handle nondeterminism. They model relational structures, representing relations as multivalued functions by selecting one argument as the “result”. This leads to strong algebraic properties missing in the case of relational structures. However, such strong properties can be obtained only by first choosing appropriate notion of homomorphism. We summarize earlier results on the possible notions of compositional homomorphisms of multialgebras and investigate in detail one of them, the outer-tight homomorphisms which yield rich structural properties not offered by other alternatives. The outer-tight homomorphisms are different from those obtained when relations are modeled as coalgebras and the associated congruence is the converse bisimulation equivalence. The category is cocomplete but initial objects are of little interest (essentially empty). On the other hand, the category does not, in general, possess final objects for the usual cardinality reasons. The main objective of the paper is to show that Aczel’s construction of final coalgebras for set-based functors can be modified and applied to multialgebras. We therefore extend the category admitting also structures over proper classes and show the existence of final objects in this category.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P.: Non-well-founded sets. Technical Report 14, CSLI (1988)Google Scholar
  2. 2.
    Aczel, P., Mendler, N.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  3. 3.
    Bošnjak, I., Madarász, R.: On power structures. Algebra and Discrete Mathematics 2, 14–35 (2003)Google Scholar
  4. 4.
    Brink, C.: Power structures. Algebra Universalis 30, 177–216 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cohn, P.M.: Universal Algebra. Mathematics and Its Applications, vol. 6. D.Reidel Publishing Company (1965)Google Scholar
  6. 6.
    de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods and their Comparison. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    Grätzer, G.: A representation theorem for multialgebras. Arch. Math. 13 (1962)Google Scholar
  8. 8.
    Hagino, T.: A Categorical Programming Language. PhD thesis, Department of Computer Science, University of Edinburgh (1987)Google Scholar
  9. 9.
    Hermida, C.: A categorical outlook on relational modalities and simulations. In: Mendler, M., Goré, R.P., de Paiva, V. (eds.) Intuitionistic Modal Logic and Aplications, July 26. DIKU technical reports, vol. 02-15, pp. 17–34 (2002)Google Scholar
  10. 10.
    Hesselink, W.H.: A mathematical approach to nondeterminism in data types. ACM ToPLaS 10 (1988)Google Scholar
  11. 11.
    Hußmann, H.: Nondeterministic algebraic specifications and nonconfluent term rewriting. In: Grabowski, J., Wechler, W., Lescanne, P. (eds.) ALP 1988. LNCS, vol. 343. Springer, Heidelberg (1989)Google Scholar
  12. 12.
    Hußmann, H.: Nondeterministic algebraic specifications. PhD thesis, Fak. f. Mathematik und Informatik, Universitat Passau (1990)Google Scholar
  13. 13.
    Hußmann, H.: Nondeterminism in Algebraic Specifications and Algebraic Programs. Birkhäuser, Basel (1993); revised version of [12]zbMATHGoogle Scholar
  14. 14.
    Jónsson, B., Tarski, A.: Boolean algebras with operators i. American J. Mathematics 73, 891–939 (1951)zbMATHCrossRefGoogle Scholar
  15. 15.
    Jónsson, B., Tarski, A.: Boolean algebras with operators ii. American J. Mathematics 74, 127–162 (1952)zbMATHCrossRefGoogle Scholar
  16. 16.
    Lamo, Y.: The institution of multialgebras – a general framework for algebraic software development. PhD thesis, Department of Informatics, University of Bergen (2002)Google Scholar
  17. 17.
    Madarász, R.: Remarks on power structures. Algebra Universalis 34(2), 179–184 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Pickert, G.: Bemerkungen zum homomorphie-begriff. Mathematische Zeitschrift 53 (1950)Google Scholar
  20. 20.
    Pickett, H.E.: Homomorphisms and subalgebras of multialgebras. Pacific J. of Mathematics 21, 327–342 (1967)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 3–80 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schweigert, D.: Congruence relations on multialgebras. Discrete Mathematics 53, 249–253 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Walicki, M., Hodzic, A., Meldal, S.: Compositional homomorphisms of relational structures. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138., Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Walicki, M., Meldal, S.: A complete calculus for the multialgebraic and functional semantics of nondeterminism. ACM ToPLaS 17(2) (1995)Google Scholar
  25. 25.
    Walicki, M., Meldal, S.: Multialgebras, power algebras and complete calculi of identities and inclusions. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  26. 26.
    Walicki, M., Meldal, S.: Algebraic approaches to nondeterminism – an overview. ACM Computing Surveys 29(1) (March 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michał Walicki
    • 1
  1. 1.Department of InformaticsUniversity of Bergen 

Personalised recommendations