Advertisement

Labels from Reductions: Towards a General Theory

  • Bartek Klin
  • Vladimiro Sassone
  • Paweł Sobociński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

We consider open terms and parametric rules in the context of the systematic derivation of labelled transitions from reduction systems.

Keywords

Composition Operator Universal Property Label Transition System Reduction Rule Open Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph re writing. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Gadducci, F., Montanari, U.: The tile model. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)Google Scholar
  3. 3.
    Jensen, O.H., Milner, R.: Bigraphs and mobile processes. Technical Report 570, University of Cambridge (2003)Google Scholar
  4. 4.
    Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Mac Lane, S.: Categorical algebra. Bulletin of the American Mathematical Society 71, 40–106 (1965)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics. Springer, Heidelberg (1992)Google Scholar
  7. 7.
    Milner, R.: Calculi for interaction. Acta Informatica 33(8), 707–737 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19, Aarhus University, Computer Science Department (1981)Google Scholar
  11. 11.
    Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2-categories. Nordic Journal of Computing 10(2), 163–183 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Workshop on Petri Nets and Graph Transformation. ENTCS, vol. 127, pp. 107–120 (2005)Google Scholar
  13. 13.
    Sassone, V., Sobociński, P.: Locating reaction with 2-categories. Theoretical Computer Science 333(1-2), 297–327 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proceedings of Logics in Computer Science. LICS 2005. IEEE Press, Los Alamitos (2005)Google Scholar
  15. 15.
    Sewell, P.: Working notes PS15–PS19, Unpublished notes (2000)Google Scholar
  16. 16.
    Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Computer Science 274(1–2), 183–230 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Sobociński, P.: Deriving process congruences from reaction rules. PhD thesis, BRICS, University of Aarhus (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bartek Klin
    • 1
  • Vladimiro Sassone
    • 1
  • Paweł Sobociński
    • 1
  1. 1.Warsaw University, University of Sussex, and PPS – Université Paris VII 

Personalised recommendations