Advertisement

Ultrafilter Extensions for Coalgebras

  • C. Kupke
  • A. Kurz
  • D. Pattinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S.: A domain equation for bisimulation. Information and Computation 92 (1991)Google Scholar
  2. 2.
    Abramsky, S., Jung, A.: Domain theory. In: Handbook of Logic in Computer Science. OUP (1994)Google Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. CSLI, Stanford (2001)Google Scholar
  4. 4.
    Bonsangue, M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Goldblatt, R.: Metamathematics of modal logic I. Reports on Mathematical Logic  6 (1976)Google Scholar
  6. 6.
    Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. Theor. Inform. Appl. 35 (2001)Google Scholar
  7. 7.
    Johnstone, P.: Stone Spaces. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  8. 8.
    Jónsson, B., Tarski, A.: Boolean algebras with operators, part 1. Amer. J. Math. 73 (1951)Google Scholar
  9. 9.
    Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In: CMCS 2004. ENTCS (2004)Google Scholar
  10. 10.
    Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theoret. Comput. Sci.  327 (2004)Google Scholar
  11. 11.
    Kurz, A.: A co-variety-theorem for modal logic. In: Advances in Modal Logic 2. CSLI, Stanford, CA (2001); Selected Papers from AiML 2, Uppsala (1998)Google Scholar
  12. 12.
    Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260 (2001); Earlier version appeared in the Proceedings of CMCS 1998. ENTCS, vol. 11 (1998)Google Scholar
  13. 13.
    Kurz, A., Rosický, J.: Operations and equations for coalgebras. Math. Structures Comput. Sci. 15 (2005)Google Scholar
  14. 14.
    Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999)Google Scholar
  15. 15.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309 (2003)Google Scholar
  16. 16.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame Journal of Formal Logic 45 (2004)Google Scholar
  17. 17.
    Rößiger, M.: From modal logic to terminal coalgebras. Theoret. Comput. Sci. 260 (2001)Google Scholar
  18. 18.
    Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249 (2000)Google Scholar
  19. 19.
    Schroeder, L.: Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441. Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Venema, Y.: Algebras and Coalgebras. In: Handbook of Modal Logic. Electronically available (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • C. Kupke
    • 1
  • A. Kurz
    • 2
  • D. Pattinson
    • 3
  1. 1.CWI and Universiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Computer ScienceUniversity of LeicesterUK
  3. 3.Imperial CollegeLondonUK

Personalised recommendations