Skip to main content

Towards a Coalgebraic Semantics of the Ambient Calculus

  • Conference paper
  • 415 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 3629)

Abstract

Recently, various process calculi have been introduced which are suited for the modelling of mobile computation and in particular the mobility of program code; a prominent example is the ambient calculus. Due to the complexity of the involved spatial reduction, there is — in contrast to the situation in standard process algebra — up to now no satisfying coalgebraic representation of a mobile process calculus. Here, we discuss work towards a unifying coalgebraic framework for the denotational semantics of mobile systems. The connection between the ambient calculus and a coalgebraic approach which uses an extension of labelled transition systems in the representation of the reduction relation is analyzed in more detail. The formal representation of this framework is cast in the algebraic-coalgebraic specification language CoCasl.

Keywords

  • Modal Logic
  • Transition Rule
  • Label Transition System
  • Denotational Semantic
  • Semantic Domain

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11548133_15
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31876-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, F.: Generalised coinduction. Math. Struct. Comput. Sci. 13, 321–348 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  2. Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  3. Cardelli, L., Gordon, A.: Ambient logic. Math. Struct. Comput. Sci. (to appear)

    Google Scholar 

  4. Cardelli, L., Gordon, A.: Mobile ambients. Theoret. Comput. Sci. 240, 177–213 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  5. Gordon, A., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. Comput. Sci. 13, 371–408 (2003)

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. Honsell, F., Lenisa, M., Montanari, U., Pistore, M.: Final semantics for the π-calculus. Programming Concepts and Methods, pp. 225–243. Chapman & Hall, Boca Raton (1998)

    Google Scholar 

  7. Klin, B.: A coalgebraic approach to process equivalence and a coinduction principle for traces. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 201–218. Elsevier, Amsterdam (2004)

    Google Scholar 

  8. Merro, M., Hennessy, M.: Bisimulation congruences in safe ambients. ACM SIGPLAN Notices 37, 71–80 (2002)

    CrossRef  Google Scholar 

  9. Merro, M., Zappa Nardelli, F.: Behavioural theory for mobile ambients, Tech. Report RR-5375, INRIA (2004)

    Google Scholar 

  10. Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCasl. J. Logic Algebraic Programming (to appear)

    Google Scholar 

  11. Mosses, P.D. (ed.): Casl reference manual. LNCS, vol. 2960. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)

    MATH  CrossRef  MathSciNet  Google Scholar 

  13. Pattinson, D., Wirsing, M.: Making components move: a separation of concerns approach. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 487–507. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  14. Rutten, J.: Universal coalgebra: a theory of systems Theoret. Comput. Sci. 249, 3–80 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  16. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  17. Vigliotti, M.: Reduction semantics for ambient calculi, Ph.D. thesis, Imperial College, London (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hausmann, D., Mossakowski, T., Schröder, L. (2005). Towards a Coalgebraic Semantics of the Ambient Calculus. In: Fiadeiro, J.L., Harman, N., Roggenbach, M., Rutten, J. (eds) Algebra and Coalgebra in Computer Science. CALCO 2005. Lecture Notes in Computer Science, vol 3629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11548133_15

Download citation

  • DOI: https://doi.org/10.1007/11548133_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28620-2

  • Online ISBN: 978-3-540-31876-7

  • eBook Packages: Computer ScienceComputer Science (R0)