Advertisement

Towards a Coalgebraic Semantics of the Ambient Calculus

  • Daniel Hausmann
  • Till Mossakowski
  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)

Abstract

Recently, various process calculi have been introduced which are suited for the modelling of mobile computation and in particular the mobility of program code; a prominent example is the ambient calculus. Due to the complexity of the involved spatial reduction, there is — in contrast to the situation in standard process algebra — up to now no satisfying coalgebraic representation of a mobile process calculus. Here, we discuss work towards a unifying coalgebraic framework for the denotational semantics of mobile systems. The connection between the ambient calculus and a coalgebraic approach which uses an extension of labelled transition systems in the representation of the reduction relation is analyzed in more detail. The formal representation of this framework is cast in the algebraic-coalgebraic specification language CoCasl.

Keywords

Modal Logic Transition Rule Label Transition System Denotational Semantic Semantic Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartels, F.: Generalised coinduction. Math. Struct. Comput. Sci. 13, 321–348 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bidoit, M., Mosses, P.D. (eds.): CASL User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  3. 3.
    Cardelli, L., Gordon, A.: Ambient logic. Math. Struct. Comput. Sci. (to appear)Google Scholar
  4. 4.
    Cardelli, L., Gordon, A.: Mobile ambients. Theoret. Comput. Sci. 240, 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gordon, A., Cardelli, L.: Equational properties of mobile ambients. Math. Struct. Comput. Sci. 13, 371–408 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Honsell, F., Lenisa, M., Montanari, U., Pistore, M.: Final semantics for the π-calculus. Programming Concepts and Methods, pp. 225–243. Chapman & Hall, Boca Raton (1998)Google Scholar
  7. 7.
    Klin, B.: A coalgebraic approach to process equivalence and a coinduction principle for traces. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 201–218. Elsevier, Amsterdam (2004)Google Scholar
  8. 8.
    Merro, M., Hennessy, M.: Bisimulation congruences in safe ambients. ACM SIGPLAN Notices 37, 71–80 (2002)CrossRefGoogle Scholar
  9. 9.
    Merro, M., Zappa Nardelli, F.: Behavioural theory for mobile ambients, Tech. Report RR-5375, INRIA (2004)Google Scholar
  10. 10.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCasl. J. Logic Algebraic Programming (to appear)Google Scholar
  11. 11.
    Mosses, P.D. (ed.): Casl reference manual. LNCS, vol. 2960. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  12. 12.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Pattinson, D., Wirsing, M.: Making components move: a separation of concerns approach. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 487–507. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Rutten, J.: Universal coalgebra: a theory of systems Theoret. Comput. Sci. 249, 3–80 (2000)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer Science, pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  17. 17.
    Vigliotti, M.: Reduction semantics for ambient calculi, Ph.D. thesis, Imperial College, London (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Daniel Hausmann
    • 1
  • Till Mossakowski
    • 1
  • Lutz Schröder
    • 1
  1. 1.BISS, Dept. of Computer ScienceUniversity of Bremen 

Personalised recommendations