Modelling Fusion Calculus using HD-Automata

  • Gianluigi Ferrari
  • Ugo Montanari
  • Emilio Tuosto
  • Björn Victor
  • Kidane Yemane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3629)


We propose a coalgebraic model of the Fusion calculus based on HD-automata. The main advantage of the approach is that the partition refinement algorithm designed for HD-automata is easily adapted to handle Fusion calculus processes. Hence, the transition systems of Fusion calculus processes can be minimised according to the notion of observational semantics of the calculus. As a beneficial side effect, this also provides a bisimulation checker for Fusion calculus.


Transition System Operational Semantic Minimisation Algorithm Label Transition System Fusion Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Gordon, A.: A Calculus for Cryptographic Protocols: The Spi Calculus. Information and Computation 148(1), 1–70 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benton, N., Cardelli, L., Fournet, C.: Modern Concurrency Abstractions for C#. ACM Transactions on Programming Languages and Systems 26(5), 269–304 (2004)CrossRefGoogle Scholar
  3. 3.
    Boreale, M., De Nicola, R.: A Symbolic Semantics for the π-calculus. Information and Computation 126(1), 34–52 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensations in Flow Composition Languages. In: Annual Symposium on Principles of Programming Languages POPL 2005, pp. 209–220. ACM Press, New York (2005) (to appear)Google Scholar
  5. 5.
    Cattani, G.L., Sewell, P.: Models for Name-Passing Processes: Interleaving and Causal (Extended Abstract). In: Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer Science, LICS 2000, pp. 322–333. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  6. 6.
    Conchon, S., Le Fessant, F.: Jocaml: Mobile Agents for Objective-Caml. In: International Symposium on Agent Systems and Applications, October 1999, pp. 22–29. Palm Springs, California (1999)Google Scholar
  7. 7.
    Ferrari, G., Montanari, U., Pistore, M.: Minimizing Transition Systems for Name Passing Calculi: A Co-algebraic Formulation. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 129–143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Ferrari, G., Montanari, U., Tuosto, E.: From Co-algebraic Specifications to Implementation: The Mihda toolkit. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2002. LNCS, vol. 2852, pp. 319–338. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ferrari, G., Montanari, U., Tuosto, E.: Modular Verification of Systems via Service Coordination. In: Monterey Workshop 2004 (October 2004); To appear on the workshop post-proceedingsGoogle Scholar
  10. 10.
    Ferrari, G., Montanari, U., Tuosto, E.: Coalgebraic Minimisation of HD-automata for the π-Calculus in a Polymorphic λ-Calculus. Theoretical Computer Science 331, 325–365 (2004) (to appear)Google Scholar
  11. 11.
    Fiore, M., Staton, S.: Comparing Operational Models of Name-Passing Process Calculi. In: Adamek, J. (ed.) Proc. CMCS 2004. ENTCS. Elsevier, Amsterdam (2004)Google Scholar
  12. 12.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras and sheaves (and named sets, too!). Technical Report UDMI/26/2003/RR, Department of Mathematics and Computer Science, University of Udine (2003)Google Scholar
  13. 13.
    Ghani, N., Victor, B., Yemane, K.: Relationally Staged Computation in the π-calculus. In: Procedings of CMCS 2004. ENTCS, vol. 11(106), pp. 105–120 (2004)Google Scholar
  14. 14.
    Hennessy, M., Lin, H.: Symbolic Bisimulations. Theoretical Computer Science 138(2), 353–389 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Laneve, C., Zavattaro, G.: Foundations of Web Transactions. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Lin, H.: Complete Inference Systems for Weak Bisimulation Equivalences in the π-Calculus. Information and Computation 180(1), 1–29 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Montanari, U., Pistore, M.: History Dependent Automata. Technical report, Computer Science Department, Università di Pisa, TR-11-98 (1998)Google Scholar
  18. 18.
    Montanari, U., Pistore, M.: π-Calculus, Structured Coalgebras, and Minimal HD-Automata. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 569–578. Springer, Heidelberg (2000)Google Scholar
  19. 19.
    Orava, F., Parrow, J.: An Algebraic Verification of a Mobile Network. Formal Aspects of Computing 4(5), 497–543 (1992)zbMATHCrossRefGoogle Scholar
  20. 20.
    Parrow, J., Victor, B.: The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes. In: Proceedings of LICS 1998, pp. 176–185. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  21. 21.
    Pistore, M.: History Dependent Automata. PhD thesis, Computer Science Department, Università di Pisa (1999)Google Scholar
  22. 22.
    Pistore, M., Sangiorgi, D.: A Partition Refinement Algorithm for the π-Calculus. Information and Computation 164(2), 467–509 (2001)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Roxburgh, U.: BizTalk Orchestration: Transactions, Exceptions, and Debugging (2001), Microsoft Corporation, Available at
  24. 24.
    Sangiorgi, D.: A Theory of Bisimulation for the π-Calculus. Acta Informatica 33(1), 69–97 (1996)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Tuosto, E., Victor, B., Yemane, K.: Polyadic History-Dependent Automata for the Fusion Calculus. Technical Report 2003-62, Department of Information Technology, Uppsala, Sweden (December 2003), Available at
  26. 26.
    Victor, B., Moller, F.: The Mobility Workbench — A Tool for the π-Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gianluigi Ferrari
    • 1
  • Ugo Montanari
    • 1
  • Emilio Tuosto
    • 1
  • Björn Victor
    • 2
  • Kidane Yemane
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Dept. of Information TechnologyUppsala UniversitySweden

Personalised recommendations