Widening Operators for Weakly-Relational Numeric Abstractions

  • Roberto Bagnara
  • Patricia M. Hill
  • Elena Mazzi
  • Enea Zaffanella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3672)


We discuss the construction of proper widening operators on several weakly-relational numeric abstractions. Our proposal differs from previous ones in that we actually consider the semantic abstract domains, whose elements are geometric shapes, instead of the (more concrete) syntactic abstract domains of constraint networks and matrices. Since the closure by entailment operator preserves geometric shapes, but not their syntactic expressions, our widenings are immune from the divergence issues that could be faced by the previous approaches when interleaving the applications of widening and closure. The new widenings, which are variations of the standard widening for convex polyhedra defined by Cousot and Halbwachs, can be made as precise as the previous proposals working on the syntactic domains. The implementation of each new widening relies on the availability of an effective reduction procedure for the considered constraint description: we provide such an algorithm for the domain of octagonal shapes.


Geometric Shape Convex Polyhedron Abstract Interpretation Constraint Network Abstract Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM Journal on Computing 1(2), 131–137 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allen, J.F., Kautz, H.A.: A model of naive temporal reasoning. In: Formal Theories of the Commonsense World, Ablex, Norwood, NJ, pp. 251–268 (1985)Google Scholar
  3. 3.
    Bagnara, R.: Data-Flow Analysis for Constraint Logic-Based Languages. PhD thesis, Dipartimento di Informatica, Università di Pisa, Italy (1997)Google Scholar
  4. 4.
    Bagnara, R., Giacobazzi, R., Levi, G.: Static analysis of CLP programs over numeric domains. In: Proc. WSA 1992, Bordeaux. Bigre, vol. 81–82, pp. 43–50 (1992)Google Scholar
  5. 5.
    Bagnara, R., Giacobazzi, R., Levi, G.: An application of constraint propagation to data-flow analysis. In: Proc. CAIA 1993, Orlando, FL, pp. 270–276 (1993)Google Scholar
  6. 6.
    Bagnara, R., Hill, P.M., Mazzi, E., Zaffanella, E.: Widening operators for weakly-relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Univ. di Parma, Italy (2005), Available at,
  7. 7.
    Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 337–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for convex polyhedra. Science of Computer Programming (2005) (to appear)Google Scholar
  9. 9.
    Bagnara, R., Hill, P.M., Zaffanella, E.: Widening operators for powerset domains. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 135–148. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library User’s Manual. Department of Mathematics, University of Parma, release 0.7 (2004)Google Scholar
  11. 11.
    Balasundaram, V., Kennedy, K.: A technique for summarizing data access and its use in parallelism enhancing transformations. In: Proc. PLDI 1989, OR. ACM SIGPLAN Notices, Portland, vol. 24(7), pp. 41–53 (1989)Google Scholar
  12. 12.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  13. 13.
    Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence (1967)zbMATHGoogle Scholar
  14. 14.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., et al.: A static analyzer for large safety-critical software. In: Proc. PLDI 2003, San Diego, CA, pp. 196–207 (2003)Google Scholar
  15. 15.
    Clarisó, R., Cortadella, J.: The octahedron abstract domain. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 312–327. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proc. ISOP 1976, Paris, France, pp. 106–130 (1976)Google Scholar
  17. 17.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. POPL 1977, New York, pp. 238–252 (1977)Google Scholar
  18. 18.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. POPL 1979, New York, pp. 269–282 (1979)Google Scholar
  19. 19.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proc. POPL 1978, Tucson, AR, pp. 84–96 (1978)Google Scholar
  20. 20.
    Davis, E.: Constraint propagation with interval labels. Artificial Intelligence 32(3), 281–331 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990)Google Scholar
  22. 22.
    Halbwachs, N.: Détermination Automatique de Relations Linéaires Vérifiées par les Variables d’un Programme. PhD thesis, Université de Grenoble, France (1979)Google Scholar
  23. 23.
    Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Form. Method Syst. Des. 11(2), 157–185 (1997)CrossRefGoogle Scholar
  24. 24.
    Larsen, K., Larsson, F., Pettersson, P., Yi, W.: Efficient verification of real-time systems: Compact data structure and state-space reduction. In: Proc. RTSS 1997, San Francisco, CA, pp. 14–24 (1997)Google Scholar
  25. 25.
    Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Miné, A.: The octagon abstract domain. In: Proc. WCRE 2001, Stuttgart, pp. 310–319 (2001)Google Scholar
  27. 27.
    Miné, A.: A few graph-based relational numerical abstract domains. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 117–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Miné, A.: The Octagon Abstract Domain Library. École Normale Supérieure, Paris, France, release 0.9.6 (2002), Available at,
  29. 29.
    Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Paris, France (2005)Google Scholar
  31. 31.
    Sankaranarayanan, S., Sipma, H., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Shaham, R., Kolodner, E.K., Sagiv, S.: Automatic removal of array memory leaks in java. In: Watt, D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 50–66. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an abstract domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roberto Bagnara
    • 1
  • Patricia M. Hill
    • 2
  • Elena Mazzi
    • 1
  • Enea Zaffanella
    • 1
  1. 1.Department of MathematicsUniversity of ParmaItaly
  2. 2.School of ComputingUniversity of LeedsUK

Personalised recommendations