Boolean Heaps

  • Andreas Podelski
  • Thomas Wies
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3672)

Abstract

We show that the idea of predicates on heap objects can be cast in the framework of predicate abstraction. This leads to an alternative view on the underlying concepts of three-valued shape analysis by Sagiv, Reps and Wilhelm. Our construction of the abstract post operator is analogous to the corresponding construction for classical predicate abstraction, except that predicates over objects on the heap take the place of state predicates, and boolean heaps (sets of bitvectors) take the place of boolean states (bitvectors). A program is abstracted to a program over boolean heaps. For each command of the program, the corresponding abstract command is effectively constructed by deductive reasoning, namely by the application of the weakest precondition operator and an entailment test. We thus obtain a symbolic framework for shape analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balaban, I., Pnueli, A., Zuck, L.: Shape analysis by predicate abstraction. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 164–180. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.: Automatic predicate abstraction of C programs. In: Programming language design and implementation (PLDI 2001). ACM SIGPLAN Notices, vol. 36, pp. 203–213 (2001)Google Scholar
  3. 3.
    Ball, T., Podelski, A., Rajamani, S.: Boolean and cartesian abstraction for model checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Symposium on Principles of Programming Languages (POPL 1979), pp. 269–282 (1979)Google Scholar
  5. 5.
    Dams, D., Namjoshi, K.: Shape Analysis through Predicate Abstraction and Model Checking. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 310–323. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The boundary between decidability and undecidability for transitive-closure logics. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: Verification via structure simulation. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 281–294. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Klarlund, N., Schwartzbach, M.: Graph types. In: Symposium on Principles of Programming Languages (POPL’93), pp. 196–205 (1993)Google Scholar
  10. 10.
    Kuncak, V., Rinard, M.: Boolean algebra of shape analysis constraints. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 59–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Møller, A., Schwartzbach, M.: The pointer assertion logic engine. In: Programming language design and implementation (PLDI 2001), pp. 221–231 (2001)Google Scholar
  13. 13.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Transactions on Programming Languages and Systems (TOPLAS) 24(3), 217–298 (2002)CrossRefGoogle Scholar
  14. 14.
    Wies, T.: Symbolic Shape Analysis. Diploma thesis, Universität des Saarlandes, Saarbrücken, Germany (2004)Google Scholar
  15. 15.
    Yorsh, G.: Logical Characterizations of Heap Abstractions. Master’s thesis, Tel-Aviv University, Tel-Aviv, Israel (2003)Google Scholar
  16. 16.
    Yorsh, G., Reps, T., Sagiv, M.: Symbolically computing most-precise abstract operations for shape analysis. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 530–545. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andreas Podelski
    • 1
  • Thomas Wies
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations