A Relational Abstraction for Functions

  • B. Jeannet
  • D. Gopan
  • T. Reps
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3672)

Abstract

This paper concerns the abstraction of sets of functions for use in abstract interpretation. The paper gives an overview of existing methods, which are illustrated with applications to shape analysis, and formalizes a new family of relational abstract domains that allows sets of functions to be abstracted more precisely than with known approaches, while being still machine-representable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chase, D.R., Wegman, M., Zadeck, F.K.: Analysis of pointers and structures. In: Proceedings of the ACM SIGPLAN 1990 conference on Programming language design and implementation. ACM Press, New York (1990)Google Scholar
  2. 2.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th ACM Symposium on Principles of Programming Languages, POPL 1979, San Antonio (January 1979)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. Journal of Logic Programming 13(2-3), 103–179 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages). In: Proc. of the 1994 Int. Conf. on Computer Languages, Toulouse, France. IEEE Computer Society Press, Los Alamitos (1994) (invited paper)Google Scholar
  5. 5.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: 5th ACM Symposium on Principles of Programming Languages, POPL 1978, Tucson (Arizona) (January 1978)Google Scholar
  6. 6.
    Giacobazzi, R., Ranzato, F.: The reduced relative power operation on abstract domains. In: Theoretical Computer Science, p. 216 (1999)Google Scholar
  7. 7.
    Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM Trans. Program. Lang. Syst. 20(5) (1998)Google Scholar
  8. 8.
    Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with summarized dimensions. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 512–529. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Gopan, D., Reps, T., Sagiv, M.: A framework for numeric analysis of array operations. In: 32th ACM Symposium on Principles of Programming Languages (POPL 2005). ACM press, New York (2005)Google Scholar
  10. 10.
    Jones, N., Muchnick, S.: Complexity of flow analysis, inducive assertion synthesis, and a language due to Dijkstra. In: Jones, N., Muchnick, S. (eds.) Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  11. 11.
    Miné, A.: The octagon abstract domain. In: AST 2001 in Working Conference on Reverse Engineering 2001. IEEE CS Press, Los Alamitos (2001)Google Scholar
  12. 12.
    Nielson, F.: Tensor products generalize the relational data flow analysis method. In: Fourth Hungarian Computer Science Conference (1985)Google Scholar
  13. 13.
    Sagiv, M., Reps, T., Wilhelm, R.: Solving shape-analysis problems in languages with destructive updating. In: Symposium on Principles of Programming Languages (POPL 1996), pp. 16–31. ACM Press, New York (1996)CrossRefGoogle Scholar
  14. 14.
    Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Transactions on Programming Languages and Systems 24(3) (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • B. Jeannet
    • 1
  • D. Gopan
    • 2
  • T. Reps
    • 2
  1. 1.IRISA 
  2. 2.Comp. Sci. Dept.Univ. of Wisconsin 

Personalised recommendations