Skip to main content

The Well Supported Semantics for Multidimensional Dynamic Logic Programs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 3662)

Abstract

Multidimensional dynamic logic programs are a paradigm which allows to express (partially) hierarchically ordered evolving knowledge bases through (partially) ordered multi sets of logic programs and allowing to solve contradictions among rules in different programs by allowing rules in more important programs to reject rules in less important ones. This class of programs extends the class of dynamic logic program that provides meaning and semantics to sequences of logic programs. Recently a semantics named refined stable model semantics has fixed some counterintuitive behaviour of previously existing semantics for dynamic logic programs. However, it is not possible to directly extend the definitions and concepts of the refined semantics to the multidimensional case and hence more sophisticated principles and techniques are in order. In this paper we face the problem of defining a proper semantics for multidimensional dynamic logic programs by extending the idea of well supported model to this class of programs and by showing that this concept alone is enough for univocally characterizing a proper semantics. We then show how the newly defined semantics coincides with the refined one when applied to sequences of programs.

Keywords

  • Logic Program
  • Logic Programming
  • Stable Model
  • Model Semantic
  • Level Mapping

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This work was supported by project FLUX POSI/40958/SRI/01, and by the European Commission within the 6th Framework Pr. project Rewerse, no. 506779.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/11546207_28
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31827-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: Semantics for dynamic logic programming: a principled based approach. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 8–20. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  2. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Programming (1–3), 43–70 (2000)

    Google Scholar 

  3. Alferes, J.J., Banti, F., Brogi, A.: From logic programs updates to action description updates. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 52–77. Springer, Heidelberg (2005), ISBN: 972-9119-37-6

    CrossRef  Google Scholar 

  4. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. The Journal of Logic Programming 19-20, 9–72 (1994)

    CrossRef  MathSciNet  Google Scholar 

  5. Buccafurri, F., Faber, W., Leone, N.: Disjunctive logic programs with inheritance. In: De Schreye, D. (ed.) ICLP 1999 (1999)

    Google Scholar 

  6. Eiter, T., Fink, M., Sabbatini, G., Tompits, H.: On properties of semantics based on causal rejection. Theory and Practice of Logic Programming 2, 711–767 (2002)

    MATH  MathSciNet  Google Scholar 

  7. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Methods of Logic in Computer Science 1, 51–60 (1994)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K.A. (eds.) ICLP-5 (1988)

    Google Scholar 

  9. Hitzler, P.: Towards a systematic account of different logic programming semantics. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003 (2003)

    Google Scholar 

  10. Hitzler, P., Wendt, M.: A uniform approach to logic programming semantics. Theory and Practice of Logic Programming 5(1–2), 123–159 (2005)

    MathSciNet  Google Scholar 

  11. Homola, M.: Dynamic logic programming: Various semantics are equal on acyclic programs. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 78–95. Springer, Heidelberg (2005), ISBN: 972-9119-37-6

    CrossRef  Google Scholar 

  12. Leite, J.A.: Evolving Knowledge Bases. Frontiers in Artificial Intelligence and Applications, vol. 81. IOS Press, Amsterdam (2003)

    MATH  Google Scholar 

  13. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic knowledge representation. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 365–378. Springer, Heidelberg (2001)

    Google Scholar 

  14. Leite, J.A., Alferes, J.J., Pereira, L.M.: Minerva – a dynamic logic programming agent architecture. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, p. 141. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  15. Leite, J.A., Pereira, L.M.: Iterated logic program updates. In: JICSLP 1998 (1998)

    Google Scholar 

  16. Lifschitz, V., Woo, T.: Answer sets in general non-monotonic reasoning. In: Nebel, B., Rich, C., Swartout, W. (eds.) KR 1992 (1992)

    Google Scholar 

  17. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, p. 147. Springer, Heidelberg (1999)

    CrossRef  Google Scholar 

  18. Sefranek, J.: A Kripkean semantics for dynamic logic programming. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 469–486. Springer, Heidelberg (2000)

    CrossRef  Google Scholar 

  19. Zhang, Y., Foo, N.Y.: Updating logic programs. In: Prade, H. (ed.) ECAI 1998 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banti, F., Alferes, J.J., Brogi, A., Hitzler, P. (2005). The Well Supported Semantics for Multidimensional Dynamic Logic Programs. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2005. Lecture Notes in Computer Science(), vol 3662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546207_28

Download citation

  • DOI: https://doi.org/10.1007/11546207_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28538-0

  • Online ISBN: 978-3-540-31827-9

  • eBook Packages: Computer ScienceComputer Science (R0)