Short Memory Scalar Multiplication on Koblitz Curves

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3659)


We present a new method for computing the scalar multiplication on Koblitz curves. Our method is as fast as the fastest known technique but requires much less memory. We propose two settings for our method. In the first setting, well-suited for hardware implementations, memory requirements are reduced by 85%. In the second setting, well-suited for software implementations, our technique reduces the memory consumption by 70%. Thus, with much smaller memory usage, the proposed method yields the same efficiency as the fastest scalar multiplication schemes on Koblitz curves.


Elliptic curve cryptosystems Koblitz curves scalar multiplication NAF polynomial basis normal basis change-of-basis smartcard 


  1. 1.
    Avanzi, R.M., Ciet, M., Sica, F.: Faster scalar multiplication on Koblitz curves combining point halving with the Frobenius endomorphism. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 28–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation with precomputation: algorithms and lower bounds. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: side-channel atomicity. IEEE Trans. Computers 53(6), 760–768 (2004)CrossRefGoogle Scholar
  4. 4.
    Coron, J.-S., M’Raïhi, D., Tymen, C.: Fast generation of pairs (k, [k]P) for Koblitz elliptic curves. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 151–164. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Dahab, R., Hankerson, D., Hu, F., Long, M., López, J., Menezes, A.: Software multiplication using normal bases. Technical report CACR 2004-12. University of Waterloo (2004)Google Scholar
  6. 6.
    Hankerson, D., López, J., Menezes, A.: Software implementation of elliptic curve cryptography over binary fields. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 1–24. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    IEEE P1363A. Standard specifications for public-key cryptography, annex A, number-theoretic background (2000)Google Scholar
  8. 8.
    Joye, M., Tymen, C.: Compact encoding of non-adjacent forms with applications to elliptic curve cryptography. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 353–364. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography: An algebraic approach. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kaliski, B.S., Yin, Y.L.: Storage-efficient finite field basis conversion. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 81–93. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  14. 14.
    Massey, J., Omura, J.K.: Computational method and apparatus for finite field arithmetic. US Patent 4587627 (1986)Google Scholar
  15. 15.
    Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Park, D.J., Sim, S.G., Lee, P.J.: Fast scalar multiplication method using change-of-basis matrix to prevent power analysis attacks on Koblitz curves. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 474–488. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Solinas, J.A.: An improved algorithm for arithmetic on a family of elliptic curves. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 357–371. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs, Codes, and Cryptography 19(2–3), 195–249 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Systems Development LaboratoryHitachi, Ltd.KawasakiJapan
  2. 2.Future UniversityHakodateJapan

Personalised recommendations