Advertisement

Improved Higher-Order Side-Channel Attacks with FPGA Experiments

  • Eric Peeters
  • François-Xavier Standaert
  • Nicolas Donckers
  • Jean-Jacques Quisquater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3659)

Abstract

We demonstrate that masking a block cipher implementation does not sufficiently improve its security against side-channel attacks. Under exactly the same hypotheses as in a Differential Power Analysis (DPA), we describe an improvement of the previously introduced higher-order techniques allowing us to defeat masked implementations in a low (i.e. practically tractable) number of measurements. The proposed technique is based on the efficient use of the statistical distributions of the power consumption in an actual design. It is confirmed both by theoretical predictions and practical experiments against FPGA devices.

Keywords

cryptographic devices side-channel analysis DPA high-order power analysis masking countermeasure block cipher FPGA 

References

  1. 1.
    Akkar, M.L., Giraud, C.: An Implementation of DES and AES Secure againts Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309–318. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Agrawal, D., Rao, J.R., Rohatgi, P.: Multi-channel Attacks. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 2–16. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Anderson, R., Biham, E., Knudsen, L.: Serpent: A Flexible Block Cipher With Maximum Assurance. In: the proceedings of The First Advanced Encryption Standard Candidate Conference, Ventura, California, USA (August 1998)Google Scholar
  4. 4.
    Barreto, P., Rijmen, V.: The KHAZAD Legacy-Level Block Cipher. Submission to NESSIE project, available from, http://www.cosic.esat.kuleuven.ac.be/nessie/
  5. 5.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Karlof, C., Wagner, D.: Hidden Markov Model Cryptanalysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–30. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Mangard, S.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    McLachlan, G.J., Peel, D.: Finite Mixture Models. John Willey and Sons, New York (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining Smart-Card Security under the Threat of Power Analysis Attacks. IEEE Transactions on Computers 51(5), 541–552 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 71–77. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    National Bureau of Standards, FIPS PUB 46, The Data Encryption Standard, Federal Information Processing Standard, NIST, U.S. Dept. of Commerce (January 1977)Google Scholar
  15. 15.
    National Bureau of Standards, FIPS 197, Advanced Encryption Standard, Federal Information Processing Standard, NIST, U.S. Dept. of Commerce (November 2001)Google Scholar
  16. 16.
    Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-Analysis Attack on an ASIC AES implementation. In: the proceedings of ITCC 2004, Las Vegas, April 5-7 (2004)Google Scholar
  17. 17.
    Oswald, E., Mangard, S., Pramstaller, N.: Secure and Efficient Masking of AES - A Mission Impossible? IACR e-print archive 2004/134 (2004), http://eprint.iacr.org
  18. 18.
    Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Description of the AES S-box. In: the proceedings of FSE 2005 (2005)Google Scholar
  19. 19.
    Rabaey, J.M.: Digital Integrated Circuits. Prentice Hall International, Englewood Cliffs (1996)Google Scholar
  20. 20.
    Standaert, F.-X., Ors, S.B., Preneel, B.: Power Analysis of an FPGA Implementation of Rijndael: is Pipelining a DPA Countermeasure? In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Standart, F.-X., Peeters, E., Quisquater, J.-J.: On the Masking Countermeasure and Higher-Order Power Analysis Attacks. In: the proceedings of ITCC 2005, Las Vegas, USA, vol. 1, pp. 562–567 (April 2005)Google Scholar
  22. 22.
    Standart, F.-X., Peeters, E., Rouvroy, G., Quisquater, J.-J.: Power Analysis Attacks and Countermeasures of Field Programmable Gate Arrays: a Survey. In: to appear in the Proceedings of the IEEE, special issue on Cryptographic Hardware and Embedded Systems (August 2005)Google Scholar
  23. 23.
    Trailovic, L., Pao, L.Y.: Variance Estimation and Ranking of Gaussian Mixture Distributions in Target Tracking Applications. In: the proceedings of the IEEE Conference on Decision and Control, Las Vegas, NV, pp. 2195–2201 (December 2002)Google Scholar
  24. 24.
    Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Xilinx: Spartan 2.5V Field Programmable Gate Arrays Data Sheet, http://www.xilinx.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eric Peeters
    • 1
  • François-Xavier Standaert
    • 1
  • Nicolas Donckers
    • 1
  • Jean-Jacques Quisquater
    • 1
  1. 1.UCL Crypto Group, Laboratoire de MicroélectroniqueUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations