Security Evaluation Against Electromagnetic Analysis at Design Time

  • Huiyun Li
  • A. Theodore Markettos
  • Simon Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3659)


Electromagnetic analysis (EMA) can be used to compromise secret information by analysing the electric and/or magnetic fields emanating from a device. It follows differential power analysis (DPA) becoming an important side channel cryptanalysis attack on many cryptographic implementations, so that constitutes a real threat to smart card security. A systematic simulation methodology is proposed to identify and assess electromagnetic (EM) leakage characteristics of secure processors at design time. This EM simulation methodology involves current flow simulation, chip layout parasitics extraction, then data processing to simulate direct EM emissions or modulated emissions. Tests implemented on synchronous and asynchronous processors indicates that the synchronous processor has data dependent EM emission, while the asynchronous processor has data dependent timing which is visible in differential EM analysis (DEMA). In particular, DEMA of amplitude demodulated emissions reveals greater leakage compared to DEMA of direct emissions and DPA. The proposed simulation methodology can be easily employed in the framework of an integrated circuit (IC) design flow to perform a systematic EM characteristics analysis.


EM side-channel analysis smart card design time security evaluation 


  1. 1.
    Kocher, P.: Cryptanalysis of Diffe-Hellman, RSA, DSS, and other cryptosystems using timing attacks. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 171–183. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Quisquater, J.-J., Samyde, D.: Electromagnetic analysis (ema): Measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Agrawal, D., Archambeault, B., Rao, J., Rohatgi, P.: The EM side-channel(s). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Smith, M.J.: Application-Specific Integrated Circuits. Addison-Wesley, Reading (1997)Google Scholar
  7. 7.
    G3Card Consortium. 3rd generation smart card project,
  8. 8.
    Fournier, J., Moore, S., Li, H., Mullins, R., Taylor, G.: Security evaluation of asynchronous circuits. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 137–151. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Van Trees, H.L.: Detection, Estimation, and Modulation Theory: Radar-Sonar Signal Processing and Gaussian Signals in Noise. Krieger Publishing Co., Inc. (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Huiyun Li
    • 1
  • A. Theodore Markettos
    • 1
  • Simon Moore
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations