Abstract
This paper presents a method to translate a proof in an extensional version of the Calculus of Constructions into a proof in the Calculus of Inductive Constructions extended with a few axioms. We use a specific equality in order to translate the extensional conversion relation into an intensional system.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Barendregt, H.: Typed lambda calculi. In: Abramsky, et al. (eds.) Handbook of Logic in Computer Science, Oxford Univ. Press, Oxford (1993)
Blanqui, F., Jouannaud, J.-P., Okada, M.: The Calculus of Algebraic Constructions. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999, vol. 1631, p. 301. Springer, Heidelberg (1999)
Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W., Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Implementing Mathematics with the Nuprl Development System. Prentice-Hall, Englewood Cliffs (1986)
Dowek, G.: La part du calcul. Thèse d’habilitation, Université Paris 7 (1999)
Hofmann, M.: Extensional concepts in intensional type theory. Phd thesis, Edinburgh university (1995)
Hofmann, M., Streicher, T.: A groupoid model refutes uniqueness of identity proofs. In: 9th Symposium on Logic in Computer Science (LICS), Paris (1994)
Luo, Z.: ECC an Extended Calculus of Constructions. In: Proceedings of the Fourth Annual Symposium on Logic in Computer Science, Pacific Grove, California (1989)
McBride, C.: Dependently Typed Functional Programs and their Proofs. PhD thesis, University of Edinburgh (1999), Available from http://www.lfcsinformatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/
Walukiewicz-Chrzaszcz, D.: Termination of rewriting in the Calculus of Constructions. In: Proceedings of the Workshop on Logical Frameworks and Meta-languages, Santa Barbara, California, Part of the LICS 2000 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Oury, N. (2005). Extensionality in the Calculus of Constructions. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_18
Download citation
DOI: https://doi.org/10.1007/11541868_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28372-0
Online ISBN: 978-3-540-31820-0
eBook Packages: Computer ScienceComputer Science (R0)