Visual Tracking Algorithm for Laparoscopic Robot Surgery

  • Min-Seok Kim
  • Jin-Seok Heo
  • Jung-Ju Lee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3614)


In this paper, we present a new real-time visual servoing unit for laparoscopic surgery. This unit can automatically control a laparoscope manipulator through visual tracking of the laparoscopic surgical tool. For the tracking, we present a two-stage adaptive CONDENSATION (conditional density propagation) algorithm to detect the accurate position of the surgical tool tip from a surgical image sequence in real-time. This algorithm can be adaptable to abrupt changes of illumination. The experimental results show that the proposed visual tracking algorithm is highly robust.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arregui, M.E., Fotzgibbons Jr., R.J., Katkhouida, N., McKernan, J.B., Reich, H.: Principles of Laparoscopic surgery. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Omote, K., Feussner, H., Ungeheuer, A., Arbter, K., Wei, G.-Q.: Self-guided robotic camera control for laparoscopic surgery compared with human camera control. The American journal of surgery 177, 321–324 (1999)CrossRefGoogle Scholar
  3. 3.
    Casals, A., Amat, J., Laporte, E.: Automatic guidance of an assistant robot in laparoscopic surgery. In: IEEE International Conf. on Robotics and Automation, vol. 1, pp. 895–900 (1996)Google Scholar
  4. 4.
    Lee, C., Wang, Y.-F., Uecker, D.R., Wang, Y.: Image analysis for automated tracking in robot-assisted endoscopic surgery. In: Proceedings of the 12th IAPR International Conference, vol. 1, pp. 88–92 (1994)Google Scholar
  5. 5.
    Wei, G.-Q., Arbter, K., Hirzinger, G.: Real-time visual servoing for laparoscopic surgery. Controlling robot motion with color image segmentation. IEEE Eng. in Med. and Bio. Magazine 16(1), 40–45 (1997)CrossRefGoogle Scholar
  6. 6.
    Isard, M., Blake, A.: CONDENSATION - Conditional Density Propagation for Visual Tracking. Int. J. Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  7. 7.
    Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: In Proc. European Conf. Computer Vision, pp. 343–356 (1996)Google Scholar
  8. 8.
    Reynard, D., Wilderberg, A., Blake, A., Marchant, J.: Learning dynamics of complex motions from image sequences. In: Proc. European Conf. Computer Vision, pp. 357–368 (1996)Google Scholar
  9. 9.
    Blake, A., Isard, M.: Active contours. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Prentice Hall, Englewood Cliffs (2001)Google Scholar
  11. 11.
    Jang, G.-j., Kweon, I.-s.: Robust Object Tracking Using an Adaptive Color Model. In: IEEE International Conf. on Robotics and Automation, pp. 1677–1682 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Min-Seok Kim
    • 1
  • Jin-Seok Heo
    • 1
  • Jung-Ju Lee
    • 1
  1. 1.Mechanical Engineering DepartmentKorea Advanced Institute of Science and TechnologyDaejeonKorea

Personalised recommendations